Search Results for author: Hengchang Hu

Found 13 papers, 6 papers with code

Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders

no code implementations7 Mar 2025 Qijiong Liu, Jieming Zhu, Lu Fan, Kun Wang, Hengchang Hu, Wei Guo, Yong liu, Xiao-Ming Wu

However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems.

Benchmarking Click-Through Rate Prediction +1

Vector Quantization for Recommender Systems: A Review and Outlook

1 code implementation6 May 2024 Qijiong Liu, Xiaoyu Dong, Jiaren Xiao, Nuo Chen, Hengchang Hu, Jieming Zhu, Chenxu Zhu, Tetsuya Sakai, Xiao-Ming Wu

Finally, the survey analyzes the remaining challenges and anticipates future trends in VQ4Rec, including the challenges associated with the training of vector quantization, the opportunities presented by large language models, and emerging trends in multimodal recommender systems.

Feature Compression Quantization +2

Incorporating External Knowledge and Goal Guidance for LLM-based Conversational Recommender Systems

no code implementations3 May 2024 Chuang Li, Yang Deng, Hengchang Hu, Min-Yen Kan, Haizhou Li

This paper aims to efficiently enable large language models (LLMs) to use external knowledge and goal guidance in conversational recommender system (CRS) tasks.

Informativeness Recommendation Systems

Discrete Semantic Tokenization for Deep CTR Prediction

2 code implementations13 Mar 2024 Qijiong Liu, Hengchang Hu, Jiahao Wu, Jieming Zhu, Min-Yen Kan, Xiao-Ming Wu

Incorporating item content information into click-through rate (CTR) prediction models remains a challenge, especially with the time and space constraints of industrial scenarios.

Click-Through Rate Prediction News Recommendation +1

Lightweight Modality Adaptation to Sequential Recommendation via Correlation Supervision

no code implementations14 Jan 2024 Hengchang Hu, Qijiong Liu, Chuang Li, Min-Yen Kan

Specifically, we introduce a novel method that enhances the learning of embeddings in SR through the supervision of modality correlations.

Knowledge Distillation Representation Learning +1

Automatic Feature Fairness in Recommendation via Adversaries

1 code implementation27 Sep 2023 Hengchang Hu, Yiming Cao, Zhankui He, Samson Tan, Min-Yen Kan

We leverage the Adaptive Adversarial perturbation based on the widely-applied Factorization Machine (AAFM) as our backbone model.

Fairness Recommendation Systems

A Conversation is Worth A Thousand Recommendations: A Survey of Holistic Conversational Recommender Systems

1 code implementation14 Sep 2023 Chuang Li, Hengchang Hu, Yan Zhang, Min-Yen Kan, Haizhou Li

However, not all CRS approaches use human conversations as their source of interaction data; the majority of prior CRS work simulates interactions by exchanging entity-level information.

Language Modeling Language Modelling +2

Adaptive Multi-Modalities Fusion in Sequential Recommendation Systems

1 code implementation30 Aug 2023 Hengchang Hu, Wei Guo, Yong liu, Min-Yen Kan

We propose a graph-based approach (named MMSR) to fuse modality features in an adaptive order, enabling each modality to prioritize either its inherent sequential nature or its interplay with other modalities.

Sequential Recommendation

Do We Really Need Graph Neural Networks for Traffic Forecasting?

no code implementations30 Jan 2023 Xu Liu, Yuxuan Liang, Chao Huang, Hengchang Hu, Yushi Cao, Bryan Hooi, Roger Zimmermann

Spatio-temporal graph neural networks (STGNN) have become the most popular solution to traffic forecasting.

Modeling and Leveraging Prerequisite Context in Recommendation

1 code implementation23 Sep 2022 Hengchang Hu, Liangming Pan, Yiding Ran, Min-Yen Kan

Prerequisites can play a crucial role in users' decision-making yet recommendation systems have not fully utilized such contextual background knowledge.

Decision Making Recommendation Systems

Cannot find the paper you are looking for? You can Submit a new open access paper.