1 code implementation • 11 Apr 2025 • Gabriele Lozupone, Alessandro Bria, Francesco Fontanella, Frederick J. A. Meijer, Claudio De Stefano, Henkjan Huisman
This study presents Latent Diffusion Autoencoder (LDAE), a novel encoder-decoder diffusion-based framework for efficient and meaningful unsupervised learning in medical imaging, focusing on Alzheimer disease (AD) using brain MR from the ADNI database as a case study.
Ranked #1 on
Linear-Probe Classification
on ADNI
no code implementations • 8 Aug 2024 • Hao Li, Han Liu, Heinrich von Busch, Robert Grimm, Henkjan Huisman, Angela Tong, David Winkel, Tobias Penzkofer, Ivan Shabunin, Moon Hyung Choi, Qingsong Yang, Dieter Szolar, Steven Shea, Fergus Coakley, Mukesh Harisinghani, Ipek Oguz, Dorin Comaniciu, Ali Kamen, Bin Lou
This method translates diffusion-weighted imaging (DWI) acquisitions, including apparent diffusion coefficient (ADC) and individual DW images acquired using various b-values, to align with the style of images acquired using b-values recommended by Prostate Imaging Reporting and Data System (PI-RADS) guidelines.
no code implementations • 15 Apr 2024 • Alessa Hering, Sarah de Boer, Anindo Saha, Jasper J. Twilt, Mattias P. Heinrich, Derya Yakar, Maarten de Rooij, Henkjan Huisman, Joeran S. Bosma
Second, the effect on diagnosis is evaluated by comparing case-level cancer diagnosis performance between using the original dataset, rigidly aligned diffusion-weighted scans, or deformably aligned diffusion-weighted scans.
no code implementations • 19 Mar 2024 • Hongwei Bran Li, Fernando Navarro, Ivan Ezhov, Amirhossein Bayat, Dhritiman Das, Florian Kofler, Suprosanna Shit, Diana Waldmannstetter, Johannes C. Paetzold, Xiaobin Hu, Benedikt Wiestler, Lucas Zimmer, Tamaz Amiranashvili, Chinmay Prabhakar, Christoph Berger, Jonas Weidner, Michelle Alonso-Basant, Arif Rashid, Ujjwal Baid, Wesam Adel, Deniz Ali, Bhakti Baheti, Yingbin Bai, Ishaan Bhatt, Sabri Can Cetindag, WenTing Chen, Li Cheng, Prasad Dutand, Lara Dular, Mustafa A. Elattar, Ming Feng, Shengbo Gao, Henkjan Huisman, Weifeng Hu, Shubham Innani, Wei Jiat, Davood Karimi, Hugo J. Kuijf, Jin Tae Kwak, Hoang Long Le, Xiang Lia, Huiyan Lin, Tongliang Liu, Jun Ma, Kai Ma, Ting Ma, Ilkay Oksuz, Robbie Holland, Arlindo L. Oliveira, Jimut Bahan Pal, Xuan Pei, Maoying Qiao, Anindo Saha, Raghavendra Selvan, Linlin Shen, Joao Lourenco Silva, Ziga Spiclin, Sanjay Talbar, Dadong Wang, Wei Wang, Xiong Wang, Yin Wang, Ruiling Xia, Kele Xu, Yanwu Yan, Mert Yergin, Shuang Yu, Lingxi Zeng, Yinglin Zhang, Jiachen Zhao, Yefeng Zheng, Martin Zukovec, Richard Do, Anton Becker, Amber Simpson, Ender Konukoglu, Andras Jakab, Spyridon Bakas, Leo Joskowicz, Bjoern Menze
The challenge focuses on the uncertainty quantification of medical image segmentation which considers the omnipresence of inter-rater variability in imaging datasets.
1 code implementation • 10 May 2023 • Matin Hosseinzadeh, Anindo Saha, Joeran Bosma, Henkjan Huisman
Our proposed model outperformed the semi-supervised model in experiments with the ProstateX dataset and an external test set, by leveraging only a subset of unlabeled data rather than the full collection of 4953 cases, our proposed model demonstrated improved performance.
1 code implementation • 23 Mar 2023 • Bram de Wilde, Anindo Saha, Maarten de Rooij, Henkjan Huisman, Geert Litjens
This work shows that adapting pre-trained Stable Diffusion models to medical imaging modalities is achievable by training text embeddings using Textual Inversion.
1 code implementation • 12 Sep 2022 • Yiwen Li, Yunguan Fu, Iani Gayo, Qianye Yang, Zhe Min, Shaheer Saeed, Wen Yan, Yipei Wang, J. Alison Noble, Mark Emberton, Matthew J. Clarkson, Henkjan Huisman, Dean Barratt, Victor Adrian Prisacariu, Yipeng Hu
The prowess that makes few-shot learning desirable in medical image analysis is the efficient use of the support image data, which are labelled to classify or segment new classes, a task that otherwise requires substantially more training images and expert annotations.
no code implementations • 17 Jan 2022 • Yiwen Li, Yunguan Fu, Qianye Yang, Zhe Min, Wen Yan, Henkjan Huisman, Dean Barratt, Victor Adrian Prisacariu, Yipeng Hu
The ability to adapt medical image segmentation networks for a novel class such as an unseen anatomical or pathological structure, when only a few labelled examples of this class are available from local healthcare providers, is sought-after.
2 code implementations • 9 Dec 2021 • Joeran S. Bosma, Anindo Saha, Matin Hosseinzadeh, Ilse Slootweg, Maarten de Rooij, Henkjan Huisman
Semi-supervised training was 14$\times$ more annotation-efficient for case-based performance and 6$\times$ more annotation-efficient for lesion-based performance.
no code implementations • 30 Nov 2021 • Natália Alves, Megan Schuurmans, Geke Litjens, Joeran S. Bosma, John Hermans, Henkjan Huisman
In this study, state-of-the-art deep learning models were used to develop an automatic framework for PDAC detection, focusing on small lesions.
1 code implementation • 25 Oct 2021 • Anindo Saha, Joeran Bosma, Jasper Linmans, Matin Hosseinzadeh, Henkjan Huisman
We hypothesize that probabilistic voxel-level classification of anatomy and malignancy in prostate MRI, although typically posed as near-identical segmentation tasks via U-Nets, require different loss functions for optimal performance due to inherent differences in their clinical objectives.
no code implementations • 15 Jun 2021 • Bram de Wilde, Richard P. G. ten Broek, Henkjan Huisman
We experimented with spatio-temporal deep learning architectures centered around a ConvGRU architecture.
1 code implementation • 10 Jun 2021 • Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, AnnetteKopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Goli Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, Henkjan Huisman, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Namkug Kim, Ildoo Kim, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Segmentation is so far the most widely investigated medical image processing task, but the various segmentation challenges have typically been organized in isolation, such that algorithm development was driven by the need to tackle a single specific clinical problem.
1 code implementation • 8 Jan 2021 • Anindo Saha, Matin Hosseinzadeh, Henkjan Huisman
We present a multi-stage 3D computer-aided detection and diagnosis (CAD) model for automated localization of clinically significant prostate cancer (csPCa) in bi-parametric MR imaging (bpMRI).
1 code implementation • 31 Oct 2020 • Anindo Saha, Matin Hosseinzadeh, Henkjan Huisman
We hypothesize that anatomical priors can be viable mediums to infuse domain-specific clinical knowledge into state-of-the-art convolutional neural networks (CNN) based on the U-Net architecture.
1 code implementation • 3 Jul 2019 • Shi Hu, Daniel Worrall, Stefan Knegt, Bas Veeling, Henkjan Huisman, Max Welling
The accurate estimation of predictive uncertainty carries importance in medical scenarios such as lung node segmentation.
no code implementations • 19 Jun 2018 • Germonda Mooij, Ines Bagulho, Henkjan Huisman
We show that to segment more tissues the network replaces feature maps that were dedicated to detecting prostate peripheral zones, by feature maps detecting the surrounding tissues.
no code implementations • 9 Jun 2018 • Ard de Gelder, Henkjan Huisman
Organ image segmentation can be improved by implementing prior knowledge about the anatomy.