Search Results for author: Henrik Marklund

Found 5 papers, 3 papers with code

Extending the WILDS Benchmark for Unsupervised Adaptation

no code implementations ICLR 2022 Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea Finn, Percy Liang

Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well.

Adaptive Risk Minimization: A Meta-Learning Approach for Tackling Group Shift

no code implementations28 Sep 2020 Marvin Mengxin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, Chelsea Finn

A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.

Image Classification Meta-Learning

Adaptive Risk Minimization: Learning to Adapt to Domain Shift

3 code implementations NeurIPS 2021 Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, Chelsea Finn

A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.

Domain Generalization Image Classification +1

Cannot find the paper you are looking for? You can Submit a new open access paper.