no code implementations • 5 May 2021 • Mohamed S. Elmahdy, Laurens Beljaards, Sahar Yousefi, Hessam Sokooti, Fons Verbeek, U. A. van der Heide, Marius Staring
In this paper, we formulate registration and segmentation as a joint problem via a Multi-Task Learning (MTL) setting, allowing these tasks to leverage their strengths and mitigate their weaknesses through the sharing of beneficial information.
1 code implementation • 8 Mar 2021 • Sahar Yousefi, Hessam Sokooti, Wouter M. Teeuwisse, Dennis F. R. Heijtel, Aart J. Nederveen, Marius Staring, Matthias J. P. van Osch
To tackle this problem, we present a new semi-supervised multitask CNN which is trained on both paired data, i. e. ASL and PET scans, and unpaired data, i. e. only ASL scans, which alleviates the problem of training a network on limited paired data.
3 code implementations • 6 Dec 2020 • Sahar Yousefi, Hessam Sokooti, Mohamed S. Elmahdy, Irene M. Lips, Mohammad T. Manzuri Shalmani, Roel T. Zinkstok, Frank J. W. M. Dankers, Marius Staring
The proposed network achieved a $\mathrm{DSC}$ value of $0. 79 \pm 0. 20$, a mean surface distance of $5. 4 \pm 20. 2mm$ and $95\%$ Hausdorff distance of $14. 7 \pm 25. 0mm$ for 287 test scans, demonstrating promising results with a simplified clinical workflow based on CT alone.
1 code implementation • 27 Aug 2019 • Hessam Sokooti, Bob de Vos, Floris Berendsen, Mohsen Ghafoorian, Sahar Yousefi, Boudewijn P. F. Lelieveldt, Ivana Isgum, Marius Staring
We propose a supervised nonrigid image registration method, trained using artificial displacement vector fields (DVF), for which we propose and compare three network architectures.
no code implementations • 24 Aug 2019 • Sahar Yousefi, Lydiane Hirschler, Merlijn van der Plas, Mohamed S. Elmahdy, Hessam Sokooti, Matthias Van Osch, Marius Staring
Hadamard time-encoded pseudo-continuous arterial spin labeling (te-pCASL) is a signal-to-noise ratio (SNR)-efficient MRI technique for acquiring dynamic pCASL signals that encodes the temporal information into the labeling according to a Hadamard matrix.
no code implementations • 28 Jun 2019 • Mohamed S. Elmahdy, Jelmer M. Wolterink, Hessam Sokooti, Ivana Išgum, Marius Staring
Joint image registration and segmentation has long been an active area of research in medical imaging.
1 code implementation • 18 May 2019 • Hessam Sokooti, Gorkem Saygili, Ben Glocker, Boudewijn P. F. Lelieveldt, Marius Staring
This paper proposes a new automatic method to predict the registration error in a quantitative manner, and is applied to chest CT scans.
no code implementations • 17 Sep 2018 • Bob D. de Vos, Floris F. Berendsen, Max A. Viergever, Hessam Sokooti, Marius Staring, Ivana Isgum
To circumvent the need for predefined examples, and thereby to increase convenience of training ConvNets for image registration, we propose the Deep Learning Image Registration (DLIR) framework for \textit{unsupervised} affine and deformable image registration.