Search Results for author: Himanshu Pant

Found 4 papers, 1 papers with code

Complexity Controlled Generative Adversarial Networks

no code implementations20 Nov 2020 Himanshu Pant, Jayadeva, Sumit Soman

One of the issues faced in training Generative Adversarial Nets (GANs) and their variants is the problem of mode collapse, wherein the training stability in terms of the generative loss increases as more training data is used.

Learning Neural Network Classifiers with Low Model Complexity

no code implementations31 Jul 2017 Jayadeva, Himanshu Pant, Mayank Sharma, Abhimanyu Dubey, Sumit Soman, Suraj Tripathi, Sai Guruju, Nihal Goalla

Our proposed approach yields benefits across a wide range of architectures, in comparison to and in conjunction with methods such as Dropout and Batch Normalization, and our results strongly suggest that deep learning techniques can benefit from model complexity control methods such as the LCNN learning rule.

Scalable Twin Neural Networks for Classification of Unbalanced Data

1 code implementation30 Apr 2017 Jayadeva, Himanshu Pant, Sumit Soman, Mayank Sharma

In this paper, we discuss a Twin Neural Network (Twin NN) architecture for learning from large unbalanced datasets.

Classification General Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.