no code implementations • 20 Oct 2020 • Tong Zheng, Hirohisa ODA, Masahiro Oda, Shota NAKAMURA, Masaki MORI, Hirotsugu TAKABATAKE, Hiroshi NATORI, Kensaku MORI
Unsupervised SR methods are required that do not need paired LR and HR images.
no code implementations • 7 Apr 2020 • Tong ZHENG, Hirohisa ODA, Takayasu MORIYA, Takaaki SUGINO, Shota NAKAMURA, Masahiro Oda, Masaki MORI, Hirotsugu TAKABATAKE, Hiroshi NATORI, Kensaku MORI
This paper presents a super-resolution (SR) method with unpaired training dataset of clinical CT and micro CT volumes.
no code implementations • 3 Mar 2020 • Hirohisa Oda, Kohei Nishio, Takayuki Kitasaka, Hizuru Amano, Aitaro Takimoto, Hiroo Uchida, Kojiro Suzuki, Hayato Itoh, Masahiro Oda, Kensaku MORI
This paper presents a visualization method of intestine (the small and large intestines) regions and their stenosed parts caused by ileus from CT volumes.
no code implementations • 30 Dec 2019 • Tong Zheng, Hirohisa ODA, Takayasu MORIYA, Shota NAKAMURA, Masahiro Oda, Masaki MORI, Horitsugu Takabatake, Hiroshi NATORI, Kensaku MORI
This paper newly introduces multi-modality loss function for GAN-based super-resolution that can maintain image structure and intensity on unpaired training dataset of clinical CT and micro CT volumes.
no code implementations • 6 Jun 2018 • Holger R. Roth, Chen Shen, Hirohisa ODA, Takaaki Sugino, Masahiro Oda, Yuichiro Hayashi, Kazunari Misawa, Kensaku MORI
Recent advances in deep learning, like 3D fully convolutional networks (FCNs), have improved the state-of-the-art in dense semantic segmentation of medical images.
no code implementations • 11 Apr 2018 • Takayasu Moriya, Holger R. Roth, Shota NAKAMURA, Hirohisa ODA, Kai Nagara, Masahiro Oda, Kensaku MORI
This paper presents a novel unsupervised segmentation method for 3D medical images.
no code implementations • 11 Apr 2018 • Takayasu Moriya, Holger R. Roth, Shota NAKAMURA, Hirohisa ODA, Kai Nagara, Masahiro Oda, Kensaku MORI
In this paper, we propose a unified approach to unsupervised representation learning and clustering for pathology image segmentation.
no code implementations • 23 Mar 2018 • Holger R. Roth, Chen Shen, Hirohisa ODA, Masahiro Oda, Yuichiro Hayashi, Kazunari Misawa, Kensaku MORI
However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision.
1 code implementation • 14 Mar 2018 • Holger R. Roth, Hirohisa ODA, Xiangrong Zhou, Natsuki Shimizu, Ying Yang, Yuichiro Hayashi, Masahiro Oda, Michitaka Fujiwara, Kazunari Misawa, Kensaku MORI
In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models.
Ranked #2 on 3D Medical Imaging Segmentation on TCIA Pancreas-CT
no code implementations • 18 Jan 2018 • Chen Shen, Holger R. Roth, Hirohisa ODA, Masahiro Oda, Yuichiro Hayashi, Kazunari Misawa, Kensaku MORI
Deep learning-based methods achieved impressive results for the segmentation of medical images.
no code implementations • 17 Nov 2017 • Holger Roth, Masahiro Oda, Natsuki Shimizu, Hirohisa ODA, Yuichiro Hayashi, Takayuki Kitasaka, Michitaka Fujiwara, Kazunari Misawa, Kensaku MORI
Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients.
no code implementations • 15 Oct 2017 • Shuqing Chen, Holger Roth, Sabrina Dorn, Matthias May, Alexander Cavallaro, Michael M. Lell, Marc Kachelrieß, Hirohisa ODA, Kensaku MORI, Andreas Maier
In this paper, we proposed a 3D FCN based method for automatic multi-organ segmentation in DECT.
1 code implementation • 21 Apr 2017 • Holger R. Roth, Hirohisa ODA, Yuichiro Hayashi, Masahiro Oda, Natsuki Shimizu, Michitaka Fujiwara, Kazunari Misawa, Kensaku MORI
In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of seven abdominal structures (artery, vein, liver, spleen, stomach, gallbladder, and pancreas) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training organ-specific models.
no code implementations • 27 Feb 2017 • Holger R. Roth, Kai Nagara, Hirohisa ODA, Masahiro Oda, Tomoshi Sugiyama, Shota NAKAMURA, Kensaku MORI
The alignment of clinical CT with $\mu$CT will allow further registration with even finer resolutions of $\mu$CT (up to 10 $\mu$m resolution) and ultimately with histopathological microscopy images for further macro to micro image fusion that can aid medical image analysis.