Search Results for author: Hiroki Kanezashi

Found 14 papers, 5 papers with code

LLM-Augmented Graph Neural Recommenders: Integrating User Reviews

no code implementations3 Apr 2025 Hiroki Kanezashi, Toyotaro Suzumura, Cade Reid, Md Mostafizur Rahman, Yu Hirate

Recommender systems increasingly aim to combine signals from both user reviews and purchase (or other interaction) behaviors.

Graph Neural Network

GEFM: Graph-Enhanced EEG Foundation Model

no code implementations29 Nov 2024 LiMin Wang, Toyotaro Suzumura, Hiroki Kanezashi

To address this limitation, we propose Graph-Enhanced EEG Foundation Model (GEFM), a novel foundation model for EEG that integrates both temporal and inter-channel information.

EEG model

Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning

no code implementations25 Nov 2024 Toyotaro Suzumura, Hiroki Kanezashi, Shotaro Akahori

In diagnosing neurological disorders from electroencephalography (EEG) data, foundation models such as Transformers have been employed to capture temporal dynamics.

Anomaly Detection EEG +1

Multimodal Point-of-Interest Recommendation

no code implementations4 Oct 2024 Yuta Kanzawa, Toyotaro Suzumura, Hiroki Kanezashi, Jiawei Yong, Shintaro Fukushima

A model trained on this semi-multimodal dataset has outperformed another model trained on the same dataset without picture descriptions.

Multimodal Recommendation Sequential Recommendation

LLM-jp: A Cross-organizational Project for the Research and Development of Fully Open Japanese LLMs

no code implementations4 Jul 2024 LLM-jp, :, Akiko Aizawa, Eiji Aramaki, Bowen Chen, Fei Cheng, Hiroyuki Deguchi, Rintaro Enomoto, Kazuki Fujii, Kensuke Fukumoto, Takuya Fukushima, Namgi Han, Yuto Harada, Chikara Hashimoto, Tatsuya Hiraoka, Shohei Hisada, Sosuke Hosokawa, Lu Jie, Keisuke Kamata, Teruhito Kanazawa, Hiroki Kanezashi, Hiroshi Kataoka, Satoru Katsumata, Daisuke Kawahara, Seiya Kawano, Atsushi Keyaki, Keisuke Kiryu, Hirokazu Kiyomaru, Takashi Kodama, Takahiro Kubo, Yohei Kuga, Ryoma Kumon, Shuhei Kurita, Sadao Kurohashi, Conglong Li, Taiki Maekawa, Hiroshi Matsuda, Yusuke Miyao, Kentaro Mizuki, Sakae Mizuki, Yugo Murawaki, Akim Mousterou, Ryo Nakamura, Taishi Nakamura, Kouta Nakayama, Tomoka Nakazato, Takuro Niitsuma, Jiro Nishitoba, Yusuke Oda, Hayato Ogawa, Takumi Okamoto, Naoaki Okazaki, Yohei Oseki, Shintaro Ozaki, Koki Ryu, Rafal Rzepka, Keisuke Sakaguchi, Shota Sasaki, Satoshi Sekine, Kohei Suda, Saku Sugawara, Issa Sugiura, Hiroaki Sugiyama, Hisami Suzuki, Jun Suzuki, Toyotaro Suzumura, Kensuke Tachibana, Yu Takagi, Kyosuke Takami, Koichi Takeda, Masashi Takeshita, Masahiro Tanaka, Kenjiro Taura, Arseny Tolmachev, Nobuhiro Ueda, Zhen Wan, Shuntaro Yada, Sakiko Yahata, Yuya Yamamoto, Yusuke Yamauchi, Hitomi Yanaka, Rio Yokota, Koichiro Yoshino

This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs).

Revisiting Mobility Modeling with Graph: A Graph Transformer Model for Next Point-of-Interest Recommendation

1 code implementation2 Oct 2023 Xiaohang Xu, Toyotaro Suzumura, Jiawei Yong, Masatoshi Hanai, Chuang Yang, Hiroki Kanezashi, Renhe Jiang, Shintaro Fukushima

Extracting distinct fine-grained features unique to each piece of information is difficult since temporal information often includes spatial information, as users tend to visit nearby POIs.

Ethereum Fraud Detection with Heterogeneous Graph Neural Networks

no code implementations23 Mar 2022 Hiroki Kanezashi, Toyotaro Suzumura, Xin Liu, Takahiro Hirofuchi

Specifically, we evaluated the model performance of representative homogeneous GNN models which consider single-type nodes and edges and heterogeneous GNN models which support different types of nodes and edges.

Fraud Detection Graph Neural Network

How Expressive are Transformers in Spectral Domain for Graphs?

1 code implementation23 Jan 2022 Anson Bastos, Abhishek Nadgeri, Kuldeep Singh, Hiroki Kanezashi, Toyotaro Suzumura, Isaiah Onando Mulang'

We further provide a theoretical analysis and prove that the spatial attention mechanism in the transformer cannot effectively capture the desired frequency response, thus, inherently limiting its expressiveness in spectral space.

Graph Representation Learning

The Impact of COVID-19 on Flight Networks

no code implementations4 Jun 2020 Toyotaro Suzumura, Hiroki Kanezashi, Mishal Dholakia, Euma Ishii, Sergio Alvarez Napagao, Raquel Pérez-Arnal, Dario Garcia-Gasulla, Toshiaki Murofushi

As COVID-19 transmissions spread worldwide, governments have announced and enforced travel restrictions to prevent further infections.

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs

9 code implementations26 Feb 2019 Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, Charles E. Leiserson

Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics.

Dynamic Link Prediction Edge Classification +3

Adaptive Pattern Matching with Reinforcement Learning for Dynamic Graphs

1 code implementation21 Dec 2018 Hiroki Kanezashi, Toyotaro Suzumura, Dario Garcia-Gasulla, Min-hwan Oh, Satoshi Matsuoka

We propose an incremental graph pattern matching algorithm to deal with time-evolving graph data and also propose an adaptive optimization system based on reinforcement learning to recompute vertices in the incremental process more efficiently.

Databases

Scalable Graph Learning for Anti-Money Laundering: A First Look

2 code implementations30 Nov 2018 Mark Weber, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki Kanezashi, Tim Kaler, Charles E. Leiserson, Tao B. Schardl

Organized crime inflicts human suffering on a genocidal scale: the Mexican drug cartels have murdered 150, 000 people since 2006, upwards of 700, 000 people per year are "exported" in a human trafficking industry enslaving an estimated 40 million people.

Graph Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.