no code implementations • 15 Nov 2024 • Ho Fung Tsoi, Dylan Rankin, Cecile Caillol, Miles Cranmer, Sridhara Dasu, Javier Duarte, Philip Harris, Elliot Lipeles, Vladimir Loncar
We introduce SymbolFit, a framework that automates parametric modeling by using symbolic regression to perform a machine-search for functions that fit the data, while simultaneously providing uncertainty estimates in a single run.
1 code implementation • 18 Jan 2024 • Ho Fung Tsoi, Vladimir Loncar, Sridhara Dasu, Philip Harris
Unlike most existing symbolic regression methods that struggle with datasets containing more than $\mathcal{O}(10)$ inputs, we demonstrate the effectiveness of our model on the LHC jet tagging task (16 inputs), MNIST (784 inputs), and SVHN (3072 inputs).
no code implementations • 6 May 2023 • Ho Fung Tsoi, Adrian Alan Pol, Vladimir Loncar, Ekaterina Govorkova, Miles Cranmer, Sridhara Dasu, Peter Elmer, Philip Harris, Isobel Ojalvo, Maurizio Pierini
The high-energy physics community is investigating the potential of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs) to enhance physics sensitivity while still meeting data processing time constraints.