no code implementations • 19 Nov 2024 • Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhijian Liu, Hongxu Yin, Yee Man Law, Yucheng Tang, Pengfei Guo, Can Zhao, Ziyue Xu, Yufan He, Greg Heinrich, Stephen Aylward, Marc Edgar, Michael Zephyr, Pavlo Molchanov, Baris Turkbey, Holger Roth, Daguang Xu
In contrast, we propose that for medical VLMs, a fourth stage of specialized IFT is necessary, which focuses on medical data and includes information from domain expert models.
1 code implementation • 6 Nov 2024 • Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus H. Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski, Saumya Gupta, Linshan Wu, Jiaxin Zhuang, Hao Chen, Holger Roth, Daguang Xu, Matthew B. Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou
We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
no code implementations • 3 Jul 2024 • Yucheng Tang, Yufan He, Vishwesh Nath, Pengfeig Guo, Ruining Deng, Tianyuan Yao, Quan Liu, Can Cui, Mengmeng Yin, Ziyue Xu, Holger Roth, Daguang Xu, Haichun Yang, Yuankai Huo
In this paper, we propose the holistic histopathology (HoloHisto) segmentation method to achieve end-to-end segmentation on gigapixel WSIs, whose maximum resolution is above 80, 000$\times$70, 000 pixels.
1 code implementation • 1 Apr 2022 • Ali Hatamizadeh, Ziyue Xu, Dong Yang, Wenqi Li, Holger Roth, Daguang Xu
Vision Transformers (ViT)s have recently become popular due to their outstanding modeling capabilities, in particular for capturing long-range information, and scalability to dataset and model sizes which has led to state-of-the-art performance in various computer vision and medical image analysis tasks.
no code implementations • CVPR 2022 • Ali Hatamizadeh, Hongxu Yin, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, Pavlo Molchanov
In this work we demonstrate the vulnerability of vision transformers (ViTs) to gradient-based inversion attacks.
no code implementations • CVPR 2022 • An Xu, Wenqi Li, Pengfei Guo, Dong Yang, Holger Roth, Ali Hatamizadeh, Can Zhao, Daguang Xu, Heng Huang, Ziyue Xu
In this work, we propose a novel training framework FedSM to avoid the client drift issue and successfully close the generalization gap compared with the centralized training for medical image segmentation tasks for the first time.
3 code implementations • 4 Jan 2022 • Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger Roth, Daguang Xu
Semantic segmentation of brain tumors is a fundamental medical image analysis task involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient and successively studying the progression of the malignant entity.
1 code implementation • CVPR 2022 • Yucheng Tang, Dong Yang, Wenqi Li, Holger Roth, Bennett Landman, Daguang Xu, Vishwesh Nath, Ali Hatamizadeh
Vision Transformers (ViT)s have shown great performance in self-supervised learning of global and local representations that can be transferred to downstream applications.
Ranked #1 on Medical Image Segmentation on Synapse multi-organ CT (using extra training data)
no code implementations • 1 Nov 2021 • Andriy Myronenko, Ziyue Xu, Dong Yang, Holger Roth, Daguang Xu
Multiple instance learning (MIL) is a key algorithm for classification of whole slide images (WSI).
no code implementations • 12 Jul 2021 • Vishwesh Nath, Dong Yang, Ali Hatamizadeh, Anas A. Abidin, Andriy Myronenko, Holger Roth, Daguang Xu
First, we show higher correlation to using full data for training when testing on the external validation set using smaller proxy data than a random selection of the proxy data.
no code implementations • 20 Apr 2021 • Yingda Xia, Dong Yang, Wenqi Li, Andriy Myronenko, Daguang Xu, Hirofumi Obinata, Hitoshi Mori, Peng An, Stephanie Harmon, Evrim Turkbey, Baris Turkbey, Bradford Wood, Francesca Patella, Elvira Stellato, Gianpaolo Carrafiello, Anna Ierardi, Alan Yuille, Holger Roth
In this work, we design a new data-driven approach, namely Auto-FedAvg, where aggregation weights are dynamically adjusted, depending on data distributions across data silos and the current training progress of the models.
1 code implementation • CVPR 2021 • Yufan He, Dong Yang, Holger Roth, Can Zhao, Daguang Xu
In this work, we focus on three important aspects of NAS in 3D medical image segmentation: flexible multi-path network topology, high search efficiency, and budgeted GPU memory usage.
10 code implementations • 18 Mar 2021 • Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman, Holger Roth, Daguang Xu
Inspired by the recent success of transformers for Natural Language Processing (NLP) in long-range sequence learning, we reformulate the task of volumetric (3D) medical image segmentation as a sequence-to-sequence prediction problem.
no code implementations • 25 Sep 2020 • Vikash Gupta1, Holger Roth, Varun Buch3, Marcio A. B. C. Rockenbach, Richard D. White, Dong Yang, Olga Laur, Brian Ghoshhajra, Ittai Dayan, Daguang Xu, Mona G. Flores, Barbaros Selnur Erdal
The training of deep learning models typically requires extensive data, which are not readily available as large well-curated medical-image datasets for development of artificial intelligence (AI) models applied in Radiology.
no code implementations • 22 Sep 2020 • Xiaosong Wang, Ziyue Xu, Dong Yang, Leo Tam, Holger Roth, Daguang Xu
We apply the attention-on-label scheme on the classification task of a synthetic noisy CIFAR-10 dataset to prove the concept, and then demonstrate superior results (3-5% increase on average in multiple disease classification AUCs) on the chest x-ray images from a hospital-scale dataset (MIMIC-CXR) and hand-labeled dataset (OpenI) in comparison to regular training paradigms.
no code implementations • 28 Jun 2020 • Yingda Xia, Dong Yang, Zhiding Yu, Fengze Liu, Jinzheng Cai, Lequan Yu, Zhuotun Zhu, Daguang Xu, Alan Yuille, Holger Roth
Experiments on the NIH pancreas segmentation dataset and a multi-organ segmentation dataset show state-of-the-art performance of the proposed framework on semi-supervised medical image segmentation.
1 code implementation • 22 Jun 2020 • Wentao Zhu, Can Zhao, Wenqi Li, Holger Roth, Ziyue Xu, Daguang Xu
In this work, we introduce Large deep 3D ConvNets with Automated Model Parallelism (LAMP) and investigate the impact of both input's and deep 3D ConvNets' size on segmentation accuracy.
no code implementations • 22 Jun 2020 • Xiahai Zhuang, Jiahang Xu, Xinzhe Luo, Chen Chen, Cheng Ouyang, Daniel Rueckert, Victor M. Campello, Karim Lekadir, Sulaiman Vesal, Nishant Ravikumar, Yashu Liu, Gongning Luo, Jingkun Chen, Hongwei Li, Buntheng Ly, Maxime Sermesant, Holger Roth, Wentao Zhu, Jiexiang Wang, Xinghao Ding, Xinyue Wang, Sen yang, Lei LI
In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the segmentation of LGE CMR.
no code implementations • 10 Jun 2020 • Dong Yang, Holger Roth, Ziyue Xu, Fausto Milletari, Ling Zhang, Daguang Xu
For example, fully convolutional neural networks (FCN) achieve the state-of-the-art performance in several applications of 2D/3D medical image segmentation.
no code implementations • MIDL 2019 • Dong Yang, Holger Roth, Xiaosong Wang, Ziyue Xu, Andriy Myronenko, Daguang Xu
Object segmentation plays an important role in the modern medical image analysis, which benefits clinical study, disease diagnosis, and surgery planning.
no code implementations • 18 Mar 2020 • Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett Landman, Klaus Maier-Hein, Sebastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, M. Jorge Cardoso
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems.
no code implementations • MIDL 2019 • Ziyue Xu, Xiaosong Wang, Hoo-chang Shin, Dong Yang, Holger Roth, Fausto Milletari, Ling Zhang, Daguang Xu
In this work, we investigate the potential of an end-to-end method fusing gene code with image features to generate synthetic pathology image and learn radiogenomic map simultaneously.
no code implementations • MIDL 2019 • Dong Yang, Holger Roth, Xiaosong Wang, Ziyue Xu, Yan Cheng, Daguang Xu
Analyzing high-dimensional medical images (2D/3D/4D CT, MRI, histopathological images, etc.)
no code implementations • CVPR 2020 • Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao Zhang, Alan L. Yuille, Daguang Xu
3D convolution neural networks (CNN) have been proved very successful in parsing organs or tumours in 3D medical images, but it remains sophisticated and time-consuming to choose or design proper 3D networks given different task contexts.
no code implementations • 15 Oct 2019 • Jinzheng Cai, Yingda Xia, Dong Yang, Daguang Xu, Lin Yang, Holger Roth
However, it is challenging to train the conventional CNN-based segmentation models that aware of the shape and topology of organs.
1 code implementation • 4 Oct 2019 • Wentao Zhu, Andriy Myronenko, Ziyue Xu, Wenqi Li, Holger Roth, Yufang Huang, Fausto Milletari, Daguang Xu
Furthermore, we design three segmentation frameworks based on the proposed registration framework: 1) atlas-based segmentation, 2) joint learning of both segmentation and registration tasks, and 3) multi-task learning with atlas-based segmentation as an intermediate feature.
no code implementations • 2 Oct 2019 • Holger Roth, Ling Zhang, Dong Yang, Fausto Milletari, Ziyue Xu, Xiaosong Wang, Daguang Xu
Here, we propose to use minimal user interaction in the form of extreme point clicks in order to train a segmentation model that can, in turn, be used to speed up the annotation of medical images.
no code implementations • 2 Oct 2019 • Holger Roth, Wentao Zhu, Dong Yang, Ziyue Xu, Daguang Xu
In the first step, we register a small set of five LGE cardiac magnetic resonance (CMR) images with ground truth labels to a set of 40 target LGE CMR images without annotation.
no code implementations • 8 Jul 2019 • Ziyue Xu, Xiaosong Wang, Hoo-chang Shin, Dong Yang, Holger Roth, Fausto Milletari, Ling Zhang, Daguang Xu
Radiogenomic map linking image features and gene expression profiles is useful for noninvasively identifying molecular properties of a particular type of disease.
no code implementations • 17 Jun 2019 • Andriy Myronenko, Dong Yang, Varun Buch, Daguang Xu, Alvin Ihsani, Sean Doyle, Mark Michalski, Neil Tenenholtz, Holger Roth
We propose a 4D convolutional neural network (CNN) for the segmentation of retrospective ECG-gated cardiac CT, a series of single-channel volumetric data over time.
1 code implementation • 7 Jun 2019 • Ling Zhang, Xiaosong Wang, Dong Yang, Thomas Sanford, Stephanie Harmon, Baris Turkbey, Holger Roth, Andriy Myronenko, Daguang Xu, Ziyue Xu
We rethink data augmentation for medical 3D images and propose a deep stacked transformations (DST) approach for domain generalization.
no code implementations • 19 Mar 2019 • Tomas Sakinis, Fausto Milletari, Holger Roth, Panagiotis Korfiatis, Petro Kostandy, Kenneth Philbrick, Zeynettin Akkus, Ziyue Xu, Daguang Xu, Bradley J. Erickson
Semi-automated approaches keep users in control of the results by providing means for interaction, but the main challenge is to offer a good trade-off between precision and required interaction.
no code implementations • 29 Nov 2018 • Yingda Xia, Fengze Liu, Dong Yang, Jinzheng Cai, Lequan Yu, Zhuotun Zhu, Daguang Xu, Alan Yuille, Holger Roth
Meanwhile, a fully-supervised method based on our approach achieved state-of-the-art performances on both the LiTS liver tumor segmentation and the Medical Segmentation Decathlon (MSD) challenge, demonstrating the robustness and value of our framework, even when fully supervised training is feasible.
no code implementations • 17 Nov 2017 • Holger Roth, Masahiro Oda, Natsuki Shimizu, Hirohisa ODA, Yuichiro Hayashi, Takayuki Kitasaka, Michitaka Fujiwara, Kazunari Misawa, Kensaku MORI
Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients.
no code implementations • 15 Oct 2017 • Shuqing Chen, Holger Roth, Sabrina Dorn, Matthias May, Alexander Cavallaro, Michael M. Lell, Marc Kachelrieß, Hirohisa ODA, Kensaku MORI, Andreas Maier
In this paper, we proposed a 3D FCN based method for automatic multi-organ segmentation in DECT.
no code implementations • 14 Aug 2014 • Ari Seff, Le Lu, Kevin M. Cherry, Holger Roth, Jiamin Liu, Shijun Wang, Joanne Hoffman, Evrim B. Turkbey, Ronald M. Summers
In this paper, we propose a new algorithm representation of decomposing the LN detection problem into a set of 2D object detection subtasks on sampled CT slices, largely alleviating the curse of dimensionality issue.