no code implementations • 13 Jan 2022 • Md ashad Alam, Hui Shen, Hong-Wen Deng
Many statistical machine approaches could ultimately highlight novel features of the etiology of complex diseases by analyzing multi-omics data.
no code implementations • 3 Feb 2021 • Yu Deng, Ling Wang, Chen Zhao, Shaojie Tang, Xiaoguang Cheng, Hong-Wen Deng, Weihua Zhou
In this study, we proposed an approach based on deep learning for the automatic extraction of the periosteal and endosteal contours of proximal femur in order to differentiate cortical and trabecular bone compartments.
no code implementations • 25 Jan 2021 • Chen Zhao, Haipeng Tang, Daniel McGonigle, Zhuo He, Chaoyang Zhang, Yu-Ping Wang, Hong-Wen Deng, Robert Bober, Weihua Zhou
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs. In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
no code implementations • 9 Jun 2020 • Chen Zhao, Joyce H. Keyak, Jinshan Tang, Tadashi S. Kaneko, Sundeep Khosla, Shreyasee Amin, Elizabeth J. Atkinson, Lan-Juan Zhao, Michael J. Serou, Chaoyang Zhang, Hui Shen, Hong-Wen Deng, Weihua Zhou
During the experiments for the entire cohort then for male and female subjects separately, 90% of the subjects were used in 10-fold cross-validation for training and internal validation, and to select the optimal parameters of the proposed models; the rest of the subjects were used to evaluate the performance of models.
no code implementations • 29 Apr 2020 • Md. Ashad Alam, Chuan Qiu, Hui Shen, Yu-Ping Wang, Hong-Wen Deng
In this paper, we propose a novel generalized kernel machine approach to identify higher-order composite effects in multi-view biomedical datasets.