no code implementations • ICLR 2019 • Honghua Dong, Jiayuan Mao, Xinyue Cui, Lihong Li
In this paper, we advocate the use of explicit memory for efficient exploration in reinforcement learning.
1 code implementation • 19 Jun 2024 • Honghua Dong, Qidong Su, Yubo Gao, Zhaoyu Li, Yangjun Ruan, Gennady Pekhimenko, Chris J. Maddison, Xujie Si
Large Language Models (LLMs) have become increasingly capable of handling diverse tasks with the aid of well-crafted prompts and integration of external tools, but as task complexity rises, the workflow involving LLMs can be complicated and thus challenging to implement and maintain.
1 code implementation • 25 Sep 2023 • Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddison, Tatsunori Hashimoto
Alongside the emulator, we develop an LM-based automatic safety evaluator that examines agent failures and quantifies associated risks.
3 code implementations • 8 Jul 2020 • Yuhuai Wu, Honghua Dong, Roger Grosse, Jimmy Ba
In this work, we focus on an analogical reasoning task that contains rich compositional structures, Raven's Progressive Matrices (RPM).
2 code implementations • ICLR 2019 • Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, Denny Zhou
We propose the Neural Logic Machine (NLM), a neural-symbolic architecture for both inductive learning and logic reasoning.
no code implementations • ICLR 2018 • Jiayuan Mao, Honghua Dong, Joseph J. Lim
Recent state-of-the-art reinforcement learning algorithms are trained under the goal of excelling in one specific task.
Hierarchical Reinforcement Learning reinforcement-learning +2