Search Results for author: Hongliang Li

Found 46 papers, 9 papers with code

Learning with Noisy Class Labels for Instance Segmentation

2 code implementations ECCV 2020 Longrong Yang, Fanman Meng, Hongliang Li, Qingbo Wu, Qishang Cheng

Specifically, in instance segmentation, noisy class labels play different roles in the foreground-background sub-task and the foreground-instance sub-task.

Instance Segmentation Segmentation +1

HiHa: Introducing Hierarchical Harmonic Decomposition to Implicit Neural Compression for Atmospheric Data

no code implementations9 Nov 2024 Zhewen Xu, Baoxiang Pan, Hongliang Li, Xiaohui Wei

To address this issue, we propose Hierarchical Harmonic decomposition implicit neural compression (HiHa) for atmospheric data.

Data Compression

Cognition Transferring and Decoupling for Text-supervised Egocentric Semantic Segmentation

no code implementations2 Oct 2024 Zhaofeng Shi, Heqian Qiu, Lanxiao Wang, Fanman Meng, Qingbo Wu, Hongliang Li

However, most recent third-view methods leverage the frozen Contrastive Language-Image Pre-training (CLIP) model, which is pre-trained on the semantic-oriented third-view data and lapses in the egocentric view due to the ``relation insensitive" problem.

Semantic Segmentation

Region Prompt Tuning: Fine-grained Scene Text Detection Utilizing Region Text Prompt

no code implementations20 Sep 2024 Xingtao Lin, Heqian Qiu, Lanxiao Wang, Ruihang Wang, Linfeng Xu, Hongliang Li

In this paper, we propose the region prompt tuning (RPT) method for fine-grained scene text detection, where region text prompt proposed would help focus on fine-grained features.

Scene Text Detection Text Detection

Few-Shot Continual Learning for Activity Recognition in Classroom Surveillance Images

no code implementations5 Sep 2024 Yilei Qian, Kanglei Geng, Kailong Chen, Shaoxu Cheng, Linfeng Xu, Hongliang Li, Fanman Meng, Qingbo Wu

In real classroom settings, normal teaching activities such as reading, account for a large proportion of samples, while rare non-teaching activities such as eating, continue to appear.

Activity Recognition Continual Learning +1

Distribution-Level Memory Recall for Continual Learning: Preserving Knowledge and Avoiding Confusion

no code implementations4 Aug 2024 Shaoxu Cheng, Kanglei Geng, Chiyuan He, Zihuan Qiu, Linfeng Xu, Heqian Qiu, Lanxiao Wang, Qingbo Wu, Fanman Meng, Hongliang Li

To address this issue, we propose the Distribution-Level Memory Recall (DMR) method, which uses a Gaussian mixture model to precisely fit the feature distribution of old knowledge at the distribution level and generate pseudo features in the next stage.

Continual Learning

No Re-Train, More Gain: Upgrading Backbones with Diffusion Model for Few-Shot Segmentation

no code implementations23 Jul 2024 Shuai Chen, Fanman Meng, Chenhao Wu, Haoran Wei, Runtong Zhang, Qingbo Wu, Linfeng Xu, Hongliang Li

For the second issue, due to the varying granularity of transformed priors from diverse annotation types, we conceptualize these multi-granular transformed priors as analogous to noisy intermediates at different steps of a diffusion model.

On the Adversarial Robustness of Learning-based Image Compression Against Rate-Distortion Attacks

no code implementations13 May 2024 Chenhao Wu, Qingbo Wu, Haoran Wei, Shuai Chen, Lei Wang, King Ngi Ngan, Fanman Meng, Hongliang Li

Using the performance variations as indicators, we evaluate the adversarial robustness of eight predominant LIC algorithms against diverse attacks.

Adversarial Robustness Image Compression

Bridging the Gap Between End-to-End and Two-Step Text Spotting

4 code implementations CVPR 2024 Mingxin Huang, Hongliang Li, Yuliang Liu, Xiang Bai, Lianwen Jin

Subsequently, we introduce a Bridge that connects the locked detector and recognizer through a zero-initialized neural network.

Text Spotting

MCF-VC: Mitigate Catastrophic Forgetting in Class-Incremental Learning for Multimodal Video Captioning

no code implementations27 Feb 2024 Huiyu Xiong, Lanxiao Wang, Heqian Qiu, Taijin Zhao, Benliu Qiu, Hongliang Li

Further, in order to better constrain the knowledge characteristics of old and new tasks at the specific feature level, we have created the Two-stage Knowledge Distillation (TsKD), which is able to learn the new task well while weighing the old task.

class-incremental learning Class Incremental Learning +3

SwinTextSpotter v2: Towards Better Synergy for Scene Text Spotting

no code implementations15 Jan 2024 Mingxin Huang, Dezhi Peng, Hongliang Li, Zhenghao Peng, Chongyu Liu, Dahua Lin, Yuliang Liu, Xiang Bai, Lianwen Jin

In this paper, we propose a new end-to-end scene text spotting framework termed SwinTextSpotter v2, which seeks to find a better synergy between text detection and recognition.

Text Detection Text Spotting

Dual-Consistency Model Inversion for Non-Exemplar Class Incremental Learning

no code implementations CVPR 2024 Zihuan Qiu, Yi Xu, Fanman Meng, Hongliang Li, Linfeng Xu, Qingbo Wu

In this paper we present a novel method termed Dual-Consistency Model Inversion (DCMI) to generate better synthetic samples of old classes through two pivotal consistency alignments: (1) the semantic consistency between the synthetic images and the corresponding prototypes and (2) domain consistency between synthetic and real images of new classes.

class-incremental learning Class Incremental Learning +1

GRSDet: Learning to Generate Local Reverse Samples for Few-shot Object Detection

no code implementations27 Dec 2023 Hefei Mei, Taijin Zhao, Shiyuan Tang, Heqian Qiu, Lanxiao Wang, Minjian Zhang, Fanman Meng, Hongliang Li

By transferring the knowledge of IFC from the base training to fine-tuning, the IFC generates plentiful novel samples to calibrate the novel class distribution.

Few-Shot Object Detection object-detection +1

Learning with Noisy Low-Cost MOS for Image Quality Assessment via Dual-Bias Calibration

no code implementations27 Nov 2023 Lei Wang, Qingbo Wu, Desen Yuan, King Ngi Ngan, Hongliang Li, Fanman Meng, Linfeng Xu

Learning based image quality assessment (IQA) models have obtained impressive performance with the help of reliable subjective quality labels, where mean opinion score (MOS) is the most popular choice.

Image Quality Assessment

Cross-modal Cognitive Consensus guided Audio-Visual Segmentation

1 code implementation10 Oct 2023 Zhaofeng Shi, Qingbo Wu, Fanman Meng, Linfeng Xu, Hongliang Li

Then, we feed the unified-modal label back to the visual backbone as the explicit semantic-level guidance via a Cognitive Consensus guided Attention Module (CCAM), which highlights the local features corresponding to the interested object.

Object Segmentation +1

A System-Level Energy-Efficient Digital Twin Framework for Runtime Control of Batch Manufacturing Processes

no code implementations18 Sep 2023 Hongliang Li, Herschel C. Pangborn, Ilya Kovalenko

To improve the scheduling and control of batch manufacturing processes, we propose a system-level energy-efficient Digital Twin framework that considers Time-of-Use (TOU) energy pricing for runtime decision-making.

Decision Making Scheduling

CafeBoost: Causal Feature Boost To Eliminate Task-Induced Bias for Class Incremental Learning

no code implementations CVPR 2023 Benliu Qiu, Hongliang Li, Haitao Wen, Heqian Qiu, Lanxiao Wang, Fanman Meng, Qingbo Wu, Lili Pan

We place continual learning into a causal framework, based on which we find the task-induced bias is reduced naturally by two underlying mechanisms in task and domain incremental learning.

class-incremental learning Class Incremental Learning +1

Incrementer: Transformer for Class-Incremental Semantic Segmentation With Knowledge Distillation Focusing on Old Class

no code implementations CVPR 2023 Chao Shang, Hongliang Li, Fanman Meng, Qingbo Wu, Heqian Qiu, Lanxiao Wang

Most existing methods are based on convolutional networks and prevent forgetting through knowledge distillation, which (1) need to add additional convolutional layers to predict new classes, and (2) ignore to distinguish different regions corresponding to old and new classes during knowledge distillation and roughly distill all the features, thus limiting the learning of new classes.

Class-Incremental Semantic Segmentation Decoder +2

Contrastive Continuity on Augmentation Stability Rehearsal for Continual Self-Supervised Learning

no code implementations ICCV 2023 Haoyang Cheng, Haitao Wen, Xiaoliang Zhang, Heqian Qiu, Lanxiao Wang, Hongliang Li

In order to address catastrophic forgetting without overfitting on the rehearsal samples, we propose Augmentation Stability Rehearsal (ASR) in this paper, which selects the most representative and discriminative samples by estimating the augmentation stability for rehearsal.

Continual Self-Supervised Learning Self-Supervised Learning

Forgetting to Remember: A Scalable Incremental Learning Framework for Cross-Task Blind Image Quality Assessment

1 code implementation15 Sep 2022 Rui Ma, Qingbo Wu, King Ngi Ngan, Hongliang Li, Fanman Meng, Linfeng Xu

More specifically, we develop a dynamic parameter isolation strategy to sequentially update the task-specific parameter subsets, which are non-overlapped with each other.

Incremental Learning

Exploiting Inter-Sample Affinity for Knowability-Aware Universal Domain Adaptation

no code implementations19 Jul 2022 Yifan Wang, Lin Zhang, Ran Song, Hongliang Li, Paul L. Rosin, Wei zhang

Specifically, we introduce a knowability-based labeling scheme which can be divided into two steps: 1) Knowability-guided detection of known and unknown samples based on the intrinsic structure of the neighborhoods of samples, where we leverage the first singular vectors of the affinity matrices to obtain the knowability of every target sample.

Universal Domain Adaptation

RefCrowd: Grounding the Target in Crowd with Referring Expressions

no code implementations16 Jun 2022 Heqian Qiu, Hongliang Li, Taijin Zhao, Lanxiao Wang, Qingbo Wu, Fanman Meng

Unfortunately, there is no effort to explore crowd understanding in multi-modal domain that bridges natural language and computer vision.

Attribute Referring Expression +1

Divide and Explore: Multi-Agent Separate Exploration with Shared Intrinsic Motivations

no code implementations29 Sep 2021 Xiao Jing, Zhenwei Zhu, Hongliang Li, Xin Pei, Yoshua Bengio, Tong Che, Hongyong Song

One of the greatest challenges of reinforcement learning is efficient exploration, especially when training signals are sparse or deceptive.

Distributed Computing Efficient Exploration

Non-Homogeneous Haze Removal via Artificial Scene Prior and Bidimensional Graph Reasoning

1 code implementation5 Apr 2021 Haoran Wei, Qingbo Wu, Hui Li, King Ngi Ngan, Hongliang Li, Fanman Meng, Linfeng Xu

In this paper, we propose a Non-Homogeneous Haze Removal Network (NHRN) via artificial scene prior and bidimensional graph reasoning.

Image Dehazing Single Image Dehazing

BA^2M: A Batch Aware Attention Module for Image Classification

no code implementations28 Mar 2021 Qishang Cheng, Hongliang Li, Qingbo Wu, King Ngi Ngan

Then, we feed the SARs of the whole batch to a normalization function to get the weights for each sample.

Classification General Classification +1

Advanced Geometry Surface Coding for Dynamic Point Cloud Compression

no code implementations11 Mar 2021 Jian Xiong, Hao Gao, Miaohui Wang, Hongliang Li, King Ngi Ngan, Weisi Lin

In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected onto 2D images for compressing with the existing video codecs.

CrossDet: Crossline Representation for Object Detection

1 code implementation ICCV 2021 Heqian Qiu, Hongliang Li, Qingbo Wu, Jianhua Cui, Zichen Song, Lanxiao Wang, Minjian Zhang

In this paper, we propose a novel anchor-free object detection network, called CrossDet, which uses a set of growing cross lines along horizontal and vertical axes as object representations.

Object object-detection +1

Deep Learning in Ultrasound Elastography Imaging

no code implementations14 Oct 2020 Hongliang Li, Manish Bhatt, Zhen Qu, Shiming Zhang, Martin C. Hartel, Ali Khademhosseini, Guy Cloutier

It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases.

Deep Learning

3D B-mode ultrasound speckle reduction using deep learning for 3D registration applications

no code implementations3 Aug 2020 Hongliang Li, Tal Mezheritsky, Liset Vazquez Romaguera, Samuel Kadoury

Moreover, it is found that the speckle reduction using our deep learning model contributes to improving the 3D registration performance.

Deep Learning Image Segmentation +1

A New Local Transformation Module for Few-shot Segmentation

no code implementations14 Oct 2019 Yuwei Yang, Fanman Meng, Hongliang Li, Qingbo Wu, Xiaolong Xu, Shuai Chen

The result by the matrix transformation can be regarded as an attention map with high-level semantic cues, based on which a transformation module can be built simply. The proposed transformation module is a general module that can be used to replace the transformation module in the existing few-shot segmentation frameworks.

Few-Shot Semantic Segmentation Segmentation

Subjective and Objective De-raining Quality Assessment Towards Authentic Rain Image

no code implementations26 Sep 2019 Qingbo Wu, Lei Wang, King N. Ngan, Hongliang Li, Fanman Meng, Linfeng Xu

Then, a subjective study is conducted on our DQA database, which collects the subject-rated scores of all de-rained images.

Blind Image Quality Assessment Rain Removal

Class Activation Map generation by Multiple Level Class Grouping and Orthogonal Constraint

no code implementations21 Sep 2019 Kaixu Huang, Fanman Meng, Hongliang Li, Shuai Chen, Qingbo Wu, King N. Ngan

Moreover, a new orthogonal module and a two-branch based CAM generation method are proposed to generate class regions that are orthogonal and complementary.

Classification Clustering +1

A New Few-shot Segmentation Network Based on Class Representation

no code implementations19 Sep 2019 Yuwei Yang, Fanman Meng, Hongliang Li, King N. Ngan, Qingbo Wu

This paper studies few-shot segmentation, which is a task of predicting foreground mask of unseen classes by a few of annotations only, aided by a set of rich annotations already existed.

Segmentation

Class Activation Map Generation by Representative Class Selection and Multi-Layer Feature Fusion

no code implementations23 Jan 2019 Fanman Meng, Kaixu Huang, Hongliang Li, Qingbo Wu

Existing method generates class activation map (CAM) by a set of fixed classes (i. e., using all the classes), while the discriminative cues between class pairs are not considered.

Binary Classification Clustering +1

Hierarchy Neighborhood Discriminative Hashing for An Unified View of Single-Label and Multi-Label Image retrieval

no code implementations10 Jan 2019 Lei Ma, Hongliang Li, Qingbo Wu, Fanman Meng, King Ngi Ngan

Finally, we propose a hierarchy neighborhood discriminative hashing loss to unify the single-label and multilabel image retrieval problem with a one-stream deep neural network architecture.

Multi-Label Image Retrieval Retrieval +3

Key-Word-Aware Network for Referring Expression Image Segmentation

no code implementations ECCV 2018 Hengcan Shi, Hongliang Li, Fanman Meng, Qingbo Wu

On the other hand, the relationships of different image regions are not considered as well, even though they are greatly important to eliminate the undesired foreground object in accordance with specific query.

Image Segmentation Object +2

A Perceptually Weighted Rank Correlation Indicator for Objective Image Quality Assessment

no code implementations15 May 2017 Qingbo Wu, Hongliang Li, Fanman Meng, King N. Ngan

By modifying the perception threshold, we can illustrate the sorting accuracy with a more sophisticated SA-ST curve, rather than a single rank correlation coefficient.

Image Quality Assessment

Cannot find the paper you are looking for? You can Submit a new open access paper.