Search Results for author: Hongsheng Yu

Found 3 papers, 1 papers with code

TStarBot-X: An Open-Sourced and Comprehensive Study for Efficient League Training in StarCraft II Full Game

1 code implementation27 Nov 2020 Lei Han, Jiechao Xiong, Peng Sun, Xinghai Sun, Meng Fang, Qingwei Guo, Qiaobo Chen, Tengfei Shi, Hongsheng Yu, Xipeng Wu, Zhengyou Zhang

We show that with orders of less computation scale, a faithful reimplementation of AlphaStar's methods can not succeed and the proposed techniques are necessary to ensure TStarBot-X's competitive performance.

AI Agent Imitation Learning +2

Towards Playing Full MOBA Games with Deep Reinforcement Learning

no code implementations NeurIPS 2020 Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao Qiu, Hongsheng Yu, Yinyuting Yin, Bei Shi, Liang Wang, Tengfei Shi, Qiang Fu, Wei Yang, Lanxiao Huang, Wei Liu

However, existing work falls short in handling the raw game complexity caused by the explosion of agent combinations, i. e., lineups, when expanding the hero pool in case that OpenAI's Dota AI limits the play to a pool of only 17 heroes.

AI Agent Deep Reinforcement Learning +3

Cannot find the paper you are looking for? You can Submit a new open access paper.