1 code implementation • 3 Feb 2023 • Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel Ángel González Ballester, Gustavo Carneiro, Devika R G, Hrishikesh P S, Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang, Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta, Hrvoje Bogunović, Mustafa Arikan, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, Clara I. Sánchez
Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible.
no code implementations • 11 Jan 2023 • Robbie Holland, Oliver Leingang, Christopher Holmes, Philipp Anders, Rebecca Kaye, Sophie Riedl, Johannes C. Paetzold, Ivan Ezhov, Hrvoje Bogunović, Ursula Schmidt-Erfurth, Lars Fritsche, Hendrik P. N. Scholl, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly.
no code implementations • 4 Aug 2022 • Robbie Holland, Oliver Leingang, Hrvoje Bogunović, Sophie Riedl, Lars Fritsche, Toby Prevost, Hendrik P. N. Scholl, Ursula Schmidt-Erfurth, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten
In experiments using two large clinical datasets containing 170, 427 optical coherence tomography (OCT) images of 7, 912 patients, we evaluate benefits attributed to pretraining across seven downstream tasks ranging from AMD stage and type classification to prediction of functional endpoints to segmentation of retinal layers, finding performance significantly increased in six out of seven tasks with fewer labels.
1 code implementation • 30 Jun 2022 • Taha Emre, Arunava Chakravarty, Antoine Rivail, Sophie Riedl, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Recent contrastive learning methods achieved state-of-the-art in low label regimes.
no code implementations • 18 Feb 2022 • Huihui Fang, Fei Li, Junde Wu, Huazhu Fu, Xu sun, Jaemin Son, Shuang Yu, Menglu Zhang, Chenglang Yuan, Cheng Bian, Baiying Lei, Benjian Zhao, Xinxing Xu, Shaohua Li, Francisco Fumero, José Sigut, Haidar Almubarak, Yakoub Bazi, Yuanhao Guo, Yating Zhou, Ujjwal Baid, Shubham Innani, Tianjiao Guo, Jie Yang, José Ignacio Orlando, Hrvoje Bogunović, Xiulan Zhang, Yanwu Xu
Here we release a multi-annotation, multi-quality, and multi-device color fundus image dataset for glaucoma analysis on an original challenge -- Retinal Fundus Glaucoma Challenge 2nd Edition (REFUGE2).
no code implementations • 16 Feb 2022 • Huihui Fang, Fei Li, Huazhu Fu, Xu sun, Xingxing Cao, Fengbin Lin, Jaemin Son, Sunho Kim, Gwenole Quellec, Sarah Matta, Sharath M Shankaranarayana, Yi-Ting Chen, Chuen-heng Wang, Nisarg A. Shah, Chia-Yen Lee, Chih-Chung Hsu, Hai Xie, Baiying Lei, Ujjwal Baid, Shubham Innani, Kang Dang, Wenxiu Shi, Ravi Kamble, Nitin Singhal, Ching-Wei Wang, Shih-Chang Lo, José Ignacio Orlando, Hrvoje Bogunović, Xiulan Zhang, Yanwu Xu, iChallenge-AMD study group
The ADAM challenge consisted of four tasks which cover the main aspects of detecting and characterizing AMD from fundus images, including detection of AMD, detection and segmentation of optic disc, localization of fovea, and detection and segmentation of lesions.
no code implementations • 11 Dec 2019 • Rhona Asgari, Sebastian Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, Hrvoje Bogunović
In the second approach, the surrounding retinal layers (outer boundary retinal pigment epithelium (OBRPE) and Bruch's membrane (BM)) are segmented and the remaining space between these two layers is extracted as drusen.
no code implementations • 21 Oct 2019 • Antoine Rivail, Ursula Schmidt-Erfurth, Wolf-Dieter Vogl, Sebastian M. Waldstein, Sophie Riedl, Christoph Grechenig, Zhichao Wu, Hrvoje Bogunović
Longitudinal imaging is capable of capturing the static ana\-to\-mi\-cal structures and the dynamic changes of the morphology resulting from aging or disease progression.
no code implementations • 8 Oct 2019 • José Ignacio Orlando, Huazhu Fu, João Barbossa Breda, Karel van Keer, Deepti. R. Bathula, Andrés Diaz-Pinto, Ruogu Fang, Pheng-Ann Heng, Jeyoung Kim, Joonho Lee, Joonseok Lee, Xiaoxiao Li, Peng Liu, Shuai Lu, Balamurali Murugesan, Valery Naranjo, Sai Samarth R. Phaye, Sharath M. Shankaranarayana, Apoorva Sikka, Jaemin Son, Anton Van Den Hengel, Shujun Wang, Junyan Wu, Zifeng Wu, Guanghui Xu, Yongli Xu, Pengshuai Yin, Fei Li, Yanwu Xu, Xiulan Zhang, Hrvoje Bogunović
As part of REFUGE, we have publicly released a data set of 1200 fundus images with ground truth segmentations and clinical glaucoma labels, currently the largest existing one.
no code implementations • 2 Aug 2019 • José Ignacio Orlando, Anna Breger, Hrvoje Bogunović, Sophie Riedl, Bianca S. Gerendas, Martin Ehler, Ursula Schmidt-Erfurth
Supervised deep learning models trained with standard loss functions are usually able to characterize only the most common disease appeareance from a training set, resulting in suboptimal performance and poor generalization when dealing with unseen lesions.
no code implementations • 18 Jun 2019 • Rhona Asgari, José Ignacio Orlando, Sebastian Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, Hrvoje Bogunović
We also introduce connections between each class-specific branch and the additional decoder to increase the regularization effect of this surrogate task.
no code implementations • 29 May 2019 • Philipp Seeböck, José Ignacio Orlando, Thomas Schlegl, Sebastian M. Waldstein, Hrvoje Bogunović, Sophie Klimscha, Georg Langs, Ursula Schmidt-Erfurth
We propose to take advantage of this property using bayesian deep learning, based on the assumption that epistemic uncertainties will correlate with anatomical deviations from a normal training set.
no code implementations • 24 Jan 2019 • Philipp Seeböck, David Romo-Bucheli, Sebastian Waldstein, Hrvoje Bogunović, José Ignacio Orlando, Bianca S. Gerendas, Georg Langs, Ursula Schmidt-Erfurth
Among the several sources of variability the ML models have to deal with, a major factor is the acquisition device, which can limit the ML model's generalizability.
no code implementations • 23 Jan 2019 • José Ignacio Orlando, Philipp Seeböck, Hrvoje Bogunović, Sophie Klimscha, Christoph Grechenig, Sebastian Waldstein, Bianca S. Gerendas, Ursula Schmidt-Erfurth
In this paper, we introduce a Bayesian deep learning based model for segmenting the photoreceptor layer in pathological OCT scans.
Ranked #3 on
Image Matting
on AIM-500