no code implementations • 26 Oct 2023 • Xingyan Chen, Yaling Liu, Huaming Du, Mu Wang, Yu Zhao
To address this, we introduce a novel Networked Control Variates (FedNCV) framework for Federated Learning.
no code implementations • 28 Nov 2022 • Yu Zhao, Huaming Du, Qing Li, Fuzhen Zhuang, Ji Liu, Gang Kou
In contrast, this paper attempts to provide a systematic literature survey of enterprise risk analysis approaches from Big Data perspective, which reviews more than 250 representative articles in the past almost 50 years (from 1968 to 2023).
no code implementations • 27 Nov 2022 • Yu Guo, Zhilong Xie, Xingyan Chen, Huangen Chen, Leilei Wang, Huaming Du, Shaopeng Wei, Yu Zhao, Qing Li, Gang Wu
We address the problem by introducing a novel joint method on top of BERT which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby contributing to the two tasks.
1 code implementation • 11 Jan 2022 • Yu Zhao, Huaming Du, Ying Liu, Shaopeng Wei, Xingyan Chen, Fuzhen Zhuang, Qing Li, Ji Liu, Gang Kou
Stock Movement Prediction (SMP) aims at predicting listed companies' stock future price trend, which is a challenging task due to the volatile nature of financial markets.
1 code implementation • 24 Dec 2021 • Yu Zhao, Shaopeng Wei, Huaming Du, Xingyan Chen, Qing Li, Fuzhen Zhuang, Ji Liu, Gang Kou
To address this issue, we propose a novel Dual Hierarchical Attention Networks (DHAN) based on the bi-typed multi-relational heterogeneous graphs to learn comprehensive node representations with the intra-class and inter-class attention-based encoder under a hierarchical mechanism.