no code implementations • 21 Sep 2023 • Ping Li, Yu Zhang, Li Yuan, Huaxin Xiao, Binbin Lin, Xianghua Xu
Unsupervised Video Object Segmentation (VOS) aims at identifying the contours of primary foreground objects in videos without any prior knowledge.
Semantic Segmentation Unsupervised Video Object Segmentation +1
no code implementations • CVPR 2018 • Huaxin Xiao, Jiashi Feng, Guosheng Lin, Yu Liu, Maojun Zhang
In this paper, we propose a novel MoNet model to deeply exploit motion cues for boosting video object segmentation performance from two aspects, i. e., frame representation learning and segmentation refinement.
no code implementations • CVPR 2018 • Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi Feng, Thomas S. Huang
Despite remarkable progress, weakly supervised segmentation methods are still inferior to their fully supervised counterparts.
no code implementations • CVPR 2018 • Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi Feng, Thomas S. Huang
It can produce dense and reliable object localization maps and effectively benefit both weakly- and semi- supervised semantic segmentation.
no code implementations • 18 Nov 2017 • Huaxin Xiao, Yunchao Wei, Yu Liu, Maojun Zhang, Jiashi Feng
The performance of deep learning based semantic segmentation models heavily depends on sufficient data with careful annotations.
no code implementations • NeurIPS 2017 • Xiaojie Jin, Huaxin Xiao, Xiaohui Shen, Jimei Yang, Zhe Lin, Yunpeng Chen, Zequn Jie, Jiashi Feng, Shuicheng Yan
The ability of predicting the future is important for intelligent systems, e. g. autonomous vehicles and robots to plan early and make decisions accordingly.
no code implementations • 18 Aug 2017 • Huaxin Xiao, Jiashi Feng, Yunchao Wei, Maojun Zhang
Through visualizing the differences, we can interpret the capability of different deep neural networks based saliency detection models and demonstrate that our proposed model indeed uses more reasonable structure for salient object detection.
17 code implementations • NeurIPS 2017 • Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng
In this work, we present a simple, highly efficient and modularized Dual Path Network (DPN) for image classification which presents a new topology of connection paths internally.
no code implementations • ICCV 2017 • Xiaojie Jin, Xin Li, Huaxin Xiao, Xiaohui Shen, Zhe Lin, Jimei Yang, Yunpeng Chen, Jian Dong, Luoqi Liu, Zequn Jie, Jiashi Feng, Shuicheng Yan
In this way, the network can effectively learn to capture video dynamics and temporal context, which are critical clues for video scene parsing, without requiring extra manual annotations.