Search Results for author: Hubert Soyer

Found 14 papers, 9 papers with code

Hierarchical Reinforcement Learning in Complex 3D Environments

no code implementations28 Feb 2023 Bernardo Avila Pires, Feryal Behbahani, Hubert Soyer, Kyriacos Nikiforou, Thomas Keck, Satinder Singh

Hierarchical Reinforcement Learning (HRL) agents have the potential to demonstrate appealing capabilities such as planning and exploration with abstraction, transfer, and skill reuse.

Hierarchical Reinforcement Learning reinforcement-learning +1

Making Efficient Use of Demonstrations to Solve Hard Exploration Problems

1 code implementation ICLR 2020 Tom Le Paine, Caglar Gulcehre, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan Williams, Gabriel Barth-Maron, Ziyu Wang, Nando de Freitas, Worlds Team

This paper introduces R2D3, an agent that makes efficient use of demonstrations to solve hard exploration problems in partially observable environments with highly variable initial conditions.

Multi-task Deep Reinforcement Learning with PopArt

2 code implementations12 Sep 2018 Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, Hado van Hasselt

This means the learning algorithm is general, but each solution is not; each agent can only solve the one task it was trained on.

Atari Games Multi-Task Learning +2

Low-pass Recurrent Neural Networks - A memory architecture for longer-term correlation discovery

no code implementations13 May 2018 Thomas Stepleton, Razvan Pascanu, Will Dabney, Siddhant M. Jayakumar, Hubert Soyer, Remi Munos

Reinforcement learning (RL) agents performing complex tasks must be able to remember observations and actions across sizable time intervals.

Reinforcement Learning (RL)

Grounded Language Learning in a Simulated 3D World

1 code implementation20 Jun 2017 Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright, Chris Apps, Demis Hassabis, Phil Blunsom

Trained via a combination of reinforcement and unsupervised learning, and beginning with minimal prior knowledge, the agent learns to relate linguistic symbols to emergent perceptual representations of its physical surroundings and to pertinent sequences of actions.

Grounded language learning

Learning to reinforcement learn

7 code implementations17 Nov 2016 Jane. X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, Matt Botvinick

We unpack these points in a series of seven proof-of-concept experiments, each of which examines a key aspect of deep meta-RL.

Meta-Learning Meta Reinforcement Learning +2

Progressive Neural Networks

8 code implementations15 Jun 2016 Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell

Learning to solve complex sequences of tasks--while both leveraging transfer and avoiding catastrophic forgetting--remains a key obstacle to achieving human-level intelligence.

Continual Learning reinforcement-learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.