no code implementations • 17 Sep 2020 • Chang Liu, Huichu Zhang, Wei-Nan Zhang, Guanjie Zheng, Yong Yu
The heavy traffic congestion problem has always been a concern for modern cities.
1 code implementation • 13 May 2019 • Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Wei-Nan Zhang, Yong Yu, Haiming Jin, Zhenhui Li
The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios.
Multi-agent Reinforcement Learning reinforcement-learning +3
1 code implementation • 12 May 2019 • Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, Zhenhui Li
Increasingly available city data and advanced learning techniques have empowered people to improve the efficiency of our city functions.
4 code implementations • 11 May 2019 • Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Wei-Nan Zhang, Yanmin Zhu, Kai Xu, Zhenhui Li
To enable cooperation of traffic signals, in this paper, we propose a model, CoLight, which uses graph attentional networks to facilitate communication.
Multi-agent Reinforcement Learning Reinforcement Learning +1
no code implementations • 22 Oct 2016 • Julie Yixuan Zhu, Chao Zhang, Huichu Zhang, Shi Zhi, Victor O. K. Li, Jiawei Han, Yu Zheng
Therefore, we present \emph{p-Causality}, a novel pattern-aided causality analysis approach that combines the strengths of \emph{pattern mining} and \emph{Bayesian learning} to efficiently and faithfully identify the \emph{ST causal pathways}.