1 code implementation • 4 Mar 2023 • Wei Guo, Chang Meng, Enming Yuan, ZhiCheng He, Huifeng Guo, Yingxue Zhang, Bo Chen, Yaochen Hu, Ruiming Tang, Xiu Li, Rui Zhang
However, it is challenging to explore multi-behavior data due to the unbalanced data distribution and sparse target behavior, which lead to the inadequate modeling of high-order relations when treating multi-behavior data ''as features'' and gradient conflict in multitask learning when treating multi-behavior data ''as labels''.
no code implementations • 7 Feb 2023 • Yuhao Wang, Ha Tsz Lam, Yi Wong, Ziru Liu, Xiangyu Zhao, Yichao Wang, Bo Chen, Huifeng Guo, Ruiming Tang
Multi-task learning (MTL) aims at learning related tasks in a unified model to achieve mutual improvement among tasks considering their shared knowledge.
no code implementations • 12 Dec 2022 • Shiwei Li, Huifeng Guo, Lu Hou, Wei zhang, Xing Tang, Ruiming Tang, Rui Zhang, Ruixuan Li
To this end, we formulate a novel quantization training paradigm to compress the embeddings from the training stage, termed low-precision training (LPT).
1 code implementation • 26 Oct 2022 • Hengyu Zhang, Enming Yuan, Wei Guo, ZhiCheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Xiu Li, Ruiming Tang
Sequential recommendation (SR) plays an important role in personalized recommender systems because it captures dynamic and diverse preferences from users' real-time increasing behaviors.
1 code implementation • 18 Oct 2022 • Xiangyang Li, Bo Chen, Huifeng Guo, Jingjie Li, Chenxu Zhu, Xiang Long, Sujian Li, Yichao Wang, Wei Guo, Longxia Mao, JinXing Liu, Zhenhua Dong, Ruiming Tang
FE-Block module performs fine-grained and early feature interactions to capture the interactive signals between user and item towers explicitly and CIR module leverages a contrastive interaction regularization to further enhance the interactions implicitly.
1 code implementation • 9 Aug 2022 • Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming Tang, Xue Liu
To this end, we propose an optimal embedding table learning framework OptEmbed, which provides a practical and general method to find an optimal embedding table for various base CTR models.
no code implementations • 5 Jun 2022 • Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie Li, Irwin King
Learning vectorized embeddings is at the core of various recommender systems for user-item matching.
no code implementations • 4 Apr 2022 • Bo Chen, Xiangyu Zhao, Yejing Wang, Wenqi Fan, Huifeng Guo, Ruiming Tang
Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences.
no code implementations • 3 Dec 2021 • Yankai Chen, Yifei Zhang, Yingxue Zhang, Huifeng Guo, Jingjie Li, Ruiming Tang, Xiuqiang He, Irwin King
In this work, we study the problem of representation learning for recommendation with 1-bit quantization.
no code implementations • 30 Nov 2021 • Wei Guo, Can Zhang, ZhiCheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Ruiming Tang, Xiuqiang He, Rui Zhang
With the help of two novel CNN-based multi-interest extractors, self-supervision signals are discovered with full considerations of different interest representations (point-wise and union-wise), interest dependencies (short-range and long-range), and interest correlations (inter-item and intra-item).
no code implementations • 25 Oct 2021 • Yong Gao, Huifeng Guo, Dandan Lin, Yingxue Zhang, Ruiming Tang, Xiuqiang He
It is compatible with existing GNN-based approaches for news recommendation and can capture both collaborative and content filtering information simultaneously.
1 code implementation • 3 Aug 2021 • Fuyuan Lyu, Xing Tang, Huifeng Guo, Ruiming Tang, Xiuqiang He, Rui Zhang, Xue Liu
As feature interactions bring in non-linearity, they are widely adopted to improve the performance of CTR prediction models.
Ranked #2 on
Click-Through Rate Prediction
on Avazu
no code implementations • 1 Jun 2021 • Wei Guo, Rong Su, Renhao Tan, Huifeng Guo, Yingxue Zhang, Zhirong Liu, Ruiming Tang, Xiuqiang He
To solve these problems, we propose a novel module named Dual Graph enhanced Embedding, which is compatible with various CTR prediction models to alleviate these two problems.
1 code implementation • 17 Apr 2021 • Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xiuqiang He, Wenzhi Liu
Different from the models with dense training data, the training data for CTR models is usually high-dimensional and sparse.
1 code implementation • 16 Dec 2020 • Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, Xiuqiang He
In this paper, we propose a novel embedding learning framework for numerical features in CTR prediction (AutoDis) with high model capacity, end-to-end training and unique representation properties preserved.
no code implementations • 4 Sep 2020 • Yichao Wang, Huifeng Guo, Ruiming Tang, Zhirong Liu, Xiuqiang He
Deep learning models in recommender systems are usually trained in the batch mode, namely iteratively trained on a fixed-size window of training data.
no code implementations • 25 Aug 2020 • Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Mark Coates
We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion.
1 code implementation • Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2020 • Jianing Sun, Wei Guo, Dengcheng Zhang, Yingxue Zhang, Florence Regol, Yaochen Hu, Huifeng Guo, Ruiming Tang, Han Yuan, Xiuqiang He, Mark Coates
Because of the multitude of relationships existing in recommender systems, Graph Neural Networks (GNNs) based approaches have been proposed to better characterize the various relationships between a user and items while modeling a user's preferences.
no code implementations • 1 Jan 2020 • Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming Tang, Xiuqiang He
In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process.
5 code implementations • 9 Apr 2019 • Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, Yuzhou Zhang
Easy-to-use, Modular and Extendible package of deep-learning based CTR models. DeepFM, DeepInterestNetwork(DIN), DeepInterestEvolutionNetwork(DIEN), DeepCrossNetwork(DCN), AttentionalFactorizationMachine(AFM), Neural Factorization Machine(NFM), AutoInt, Deep Session Interest Network(DSIN)
Ranked #1 on
Click-Through Rate Prediction
on Huawei App Store
5 code implementations • 29 Oct 2018 • Feng Liu, Ruiming Tang, Xutao Li, Wei-Nan Zhang, Yunming Ye, Haokun Chen, Huifeng Guo, Yuzhou Zhang
The DRR framework treats recommendation as a sequential decision making procedure and adopts an "Actor-Critic" reinforcement learning scheme to model the interactions between the users and recommender systems, which can consider both the dynamic adaptation and long-term rewards.
7 code implementations • 1 Jul 2018 • Yanru Qu, Bohui Fang, Wei-Nan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, Xiuqiang He
User response prediction is a crucial component for personalized information retrieval and filtering scenarios, such as recommender system and web search.
5 code implementations • 12 Apr 2018 • Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He, Zhenhua Dong
In this paper, we study two instances of DeepFM where its "deep" component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data.
19 code implementations • 13 Mar 2017 • Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems.
Ranked #1 on
Click-Through Rate Prediction
on Company*