Search Results for author: Huiwen Chang

Found 30 papers, 20 papers with code

Improve Supervised Representation Learning with Masked Image Modeling

no code implementations1 Dec 2023 KaiFeng Chen, Daniel Salz, Huiwen Chang, Kihyuk Sohn, Dilip Krishnan, Mojtaba Seyedhosseini

On K-Nearest-Neighbor image retrieval evaluation with ImageNet-1k, the same model outperforms the baseline by 1. 32%.

Decoder Image Retrieval +3

Leveraging Unpaired Data for Vision-Language Generative Models via Cycle Consistency

no code implementations5 Oct 2023 Tianhong Li, Sangnie Bhardwaj, Yonglong Tian, Han Zhang, Jarred Barber, Dina Katabi, Guillaume Lajoie, Huiwen Chang, Dilip Krishnan

We demonstrate image generation and captioning performance on par with state-of-the-art text-to-image and image-to-text models with orders of magnitude fewer (only 3M) paired image-text data.

Text-to-Image Generation

Learning Disentangled Prompts for Compositional Image Synthesis

1 code implementation1 Jun 2023 Kihyuk Sohn, Albert Shaw, Yuan Hao, Han Zhang, Luisa Polania, Huiwen Chang, Lu Jiang, Irfan Essa

We study domain-adaptive image synthesis, the problem of teaching pretrained image generative models a new style or concept from as few as one image to synthesize novel images, to better understand the compositional image synthesis.

Domain Adaptation Image Generation +1

StraIT: Non-autoregressive Generation with Stratified Image Transformer

no code implementations1 Mar 2023 Shengju Qian, Huiwen Chang, Yuanzhen Li, Zizhao Zhang, Jiaya Jia, Han Zhang

We propose Stratified Image Transformer(StraIT), a pure non-autoregressive(NAR) generative model that demonstrates superiority in high-quality image synthesis over existing autoregressive(AR) and diffusion models(DMs).

Image Generation

VQ3D: Learning a 3D-Aware Generative Model on ImageNet

no code implementations ICCV 2023 Kyle Sargent, Jing Yu Koh, Han Zhang, Huiwen Chang, Charles Herrmann, Pratul Srinivasan, Jiajun Wu, Deqing Sun

Recent work has shown the possibility of training generative models of 3D content from 2D image collections on small datasets corresponding to a single object class, such as human faces, animal faces, or cars.

Decoder Position

Muse: Text-To-Image Generation via Masked Generative Transformers

4 code implementations2 Jan 2023 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, Dilip Krishnan

Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding.

 Ranked #1 on Text-to-Image Generation on MS-COCO (FID metric)

Language Modelling Large Language Model +1

A simple, efficient and scalable contrastive masked autoencoder for learning visual representations

1 code implementation30 Oct 2022 Shlok Mishra, Joshua Robinson, Huiwen Chang, David Jacobs, Aaron Sarna, Aaron Maschinot, Dilip Krishnan

Our framework is a minimal and conceptually clean synthesis of (C) contrastive learning, (A) masked autoencoders, and (N) the noise prediction approach used in diffusion models.

Contrastive Learning Self-Supervised Learning +1

Imagic: Text-Based Real Image Editing with Diffusion Models

no code implementations CVPR 2023 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, Michal Irani

In this paper we demonstrate, for the very first time, the ability to apply complex (e. g., non-rigid) text-guided semantic edits to a single real image.

Style Transfer

Visual Prompt Tuning for Generative Transfer Learning

1 code implementation CVPR 2023 Kihyuk Sohn, Yuan Hao, José Lezama, Luisa Polania, Huiwen Chang, Han Zhang, Irfan Essa, Lu Jiang

We base our framework on state-of-the-art generative vision transformers that represent an image as a sequence of visual tokens to the autoregressive or non-autoregressive transformers.

Image Generation Transfer Learning +1

Improved Masked Image Generation with Token-Critic

1 code implementation9 Sep 2022 José Lezama, Huiwen Chang, Lu Jiang, Irfan Essa

Given a masked-and-reconstructed real image, the Token-Critic model is trained to distinguish which visual tokens belong to the original image and which were sampled by the generative transformer.

Diversity Image Generation

MaskGIT: Masked Generative Image Transformer

6 code implementations CVPR 2022 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, William T. Freeman

At inference time, the model begins with generating all tokens of an image simultaneously, and then refines the image iteratively conditioned on the previous generation.

Decoder Image Manipulation +2

BLT: Bidirectional Layout Transformer for Controllable Layout Generation

1 code implementation9 Dec 2021 Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, Irfan Essa

During inference, BLT first generates a draft layout from the input and then iteratively refines it into a high-quality layout by masking out low-confident attributes.

Pyramid Adversarial Training Improves ViT Performance

1 code implementation CVPR 2022 Charles Herrmann, Kyle Sargent, Lu Jiang, Ramin Zabih, Huiwen Chang, Ce Liu, Dilip Krishnan, Deqing Sun

In this work, we present pyramid adversarial training (PyramidAT), a simple and effective technique to improve ViT's overall performance.

Ranked #9 on Domain Generalization on ImageNet-C (using extra training data)

Adversarial Attack Data Augmentation +2

Palette: Image-to-Image Diffusion Models

5 code implementations10 Nov 2021 Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan Ho, Tim Salimans, David J. Fleet, Mohammad Norouzi

We expect this standardized evaluation protocol to play a role in advancing image-to-image translation research.

Colorization Denoising +6

SLIDE: Single Image 3D Photography with Soft Layering and Depth-aware Inpainting

no code implementations ICCV 2021 Varun Jampani, Huiwen Chang, Kyle Sargent, Abhishek Kar, Richard Tucker, Michael Krainin, Dominik Kaeser, William T. Freeman, David Salesin, Brian Curless, Ce Liu

We present SLIDE, a modular and unified system for single image 3D photography that uses a simple yet effective soft layering strategy to better preserve appearance details in novel views.

Image Matting

ViTGAN: Training GANs with Vision Transformers

3 code implementations ICLR 2022 Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, Ce Liu

Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases.

Image Generation

OCONet: Image Extrapolation by Object Completion

no code implementations CVPR 2021 Richard Strong Bowen, Huiwen Chang, Charles Herrmann, Piotr Teterwak, Ce Liu, Ramin Zabih

Existing methods struggle to extrapolate images with salient objects in the foreground or are limited to very specific objects such as humans, but tend to work well on indoor/outdoor scenes.

Decoder Object

AutoFlow: Learning a Better Training Set for Optical Flow

1 code implementation CVPR 2021 Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih, William T. Freeman, Ce Liu

Synthetic datasets play a critical role in pre-training CNN models for optical flow, but they are painstaking to generate and hard to adapt to new applications.

Optical Flow Estimation

Zoom-to-Inpaint: Image Inpainting with High-Frequency Details

1 code implementation17 Dec 2020 Soo Ye Kim, Kfir Aberman, Nori Kanazawa, Rahul Garg, Neal Wadhwa, Huiwen Chang, Nikhil Karnad, Munchurl Kim, Orly Liba

Although deep learning has enabled a huge leap forward in image inpainting, current methods are often unable to synthesize realistic high-frequency details.

Image Inpainting Super-Resolution +1

Distortion Agnostic Deep Watermarking

no code implementations CVPR 2020 Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, Peyman Milanfar

Watermarking is the process of embedding information into an image that can survive under distortions, while requiring the encoded image to have little or no perceptual difference from the original image.

SwapNet: Garment Transfer in Single View Images

1 code implementation ECCV 2018 Amit Raj, Patsorn Sangkloy, Huiwen Chang, Jingwan Lu, Duygu Ceylan, James Hays

Garment transfer is a challenging task that requires (i) disentangling the features of the clothing from the body pose and shape and (ii) realistic synthesis of the garment texture on the new body.

 Ranked #1 on Virtual Try-on on FashionIQ (using extra training data)

Virtual Try-on

PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup

no code implementations CVPR 2018 Huiwen Chang, Jingwan Lu, Fisher Yu, Adam Finkelstein

This paper introduces an automatic method for editing a portrait photo so that the subject appears to be wearing makeup in the style of another person in a reference photo.

Style Transfer

Cannot find the paper you are looking for? You can Submit a new open access paper.