Search Results for author: Hung Le

Found 69 papers, 27 papers with code

VGNMN: Video-grounded Neural Module Networks for Video-Grounded Dialogue Systems

no code implementations NAACL 2022 Hung Le, Nancy Chen, Steven Hoi

Neural module networks (NMN) have achieved success in image-grounded tasks such as Visual Question Answering (VQA) on synthetic images.

Information Retrieval Question Answering +2

ALIAS: DAG Learning with Efficient Unconstrained Policies

no code implementations24 Aug 2024 Bao Duong, Hung Le, Thin Nguyen

Recently, reinforcement learning (RL) has proved a promising alternative for conventional local heuristics in score-based approaches to learning directed acyclic causal graphs (DAGs) from observational data.

Causal Discovery Efficient Exploration +3

Large Language Models Prompting With Episodic Memory

no code implementations14 Aug 2024 Dai Do, Quan Tran, Svetha Venkatesh, Hung Le

We approach prompt optimization as a Reinforcement Learning (RL) challenge, using episodic memory to archive combinations of input data, permutations of few-shot examples, and the rewards observed during training.

Few-Shot Learning Reinforcement Learning (RL) +2

Variable-Agnostic Causal Exploration for Reinforcement Learning

1 code implementation17 Jul 2024 Minh Hoang Nguyen, Hung Le, Svetha Venkatesh

In this paper, we introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL), incorporating causal relationships to drive exploration in RL without specifying environmental causal variables.

Causal Discovery reinforcement-learning +1

INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness

no code implementations23 Jun 2024 Hung Le, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Doyen Sahoo

In this work, we introduce INDICT: a new framework that empowers LLMs with Internal Dialogues of Critiques for both safety and helpfulness guidance.

Code Generation Navigate

SimSMoE: Solving Representational Collapse via Similarity Measure

no code implementations22 Jun 2024 Giang Do, Hung Le, Truyen Tran

Sparse mixture of experts (SMoE) have emerged as an effective approach for scaling large language models while keeping a constant computational cost.

Multi-Reference Preference Optimization for Large Language Models

no code implementations26 May 2024 Hung Le, Quan Tran, Dung Nguyen, Kien Do, Saloni Mittal, Kelechi Ogueji, Svetha Venkatesh

Recent approaches, such as direct preference optimization (DPO), have eliminated the need for unstable and sluggish reinforcement learning optimization by introducing close-formed supervised losses.

GSM8K TruthfulQA

Enhancing Length Extrapolation in Sequential Models with Pointer-Augmented Neural Memory

no code implementations18 Apr 2024 Hung Le, Dung Nguyen, Kien Do, Svetha Venkatesh, Truyen Tran

We propose Pointer-Augmented Neural Memory (PANM) to help neural networks understand and apply symbol processing to new, longer sequences of data.

Machine Translation Mathematical Reasoning +1

Automatic Prompt Selection for Large Language Models

no code implementations3 Apr 2024 Viet-Tung Do, Van-Khanh Hoang, Duy-Hung Nguyen, Shahab Sabahi, Jeff Yang, Hajime Hotta, Minh-Tien Nguyen, Hung Le

Our approach consists of three steps: (1) clustering the training data and generating candidate prompts for each cluster using an LLM-based prompt generator; (2) synthesizing a dataset of input-prompt-output tuples for training a prompt evaluator to rank the prompts based on their relevance to the input; (3) using the prompt evaluator to select the best prompt for a new input at test time.

GSM8K Question Answering +1

Variational Flow Models: Flowing in Your Style

1 code implementation5 Feb 2024 Kien Do, Duc Kieu, Toan Nguyen, Dang Nguyen, Hung Le, Dung Nguyen, Thin Nguyen

We propose a systematic training-free method to transform the probability flow of a "linear" stochastic process characterized by the equation X_{t}=a_{t}X_{0}+\sigma_{t}X_{1} into a straight constant-speed (SC) flow, reminiscent of Rectified Flow.

Variational Inference

Revisiting the Dataset Bias Problem from a Statistical Perspective

no code implementations5 Feb 2024 Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh

To overcome this challenge, we propose to approximate \frac{1}{p(u|b)} using a biased classifier trained with "bias amplification" losses.

Attribute

Moonshot: Towards Controllable Video Generation and Editing with Multimodal Conditions

1 code implementation3 Jan 2024 David Junhao Zhang, Dongxu Li, Hung Le, Mike Zheng Shou, Caiming Xiong, Doyen Sahoo

This work presents Moonshot, a new video generation model that conditions simultaneously on multimodal inputs of image and text.

Image Animation Video Editing +1

SurvTimeSurvival: Survival Analysis On The Patient With Multiple Visits/Records

1 code implementation16 Nov 2023 Hung Le, Ong Eng-Jon, Bober Miroslaw

This study introduces "SurvTimeSurvival: Survival Analysis On Patients With Multiple Visits/Records", utilizing the Transformer model to not only handle the complexities of time-varying covariates but also covariates data.

Survival Analysis Synthetic Data Generation

CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules

1 code implementation13 Oct 2023 Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, Shafiq Joty

We find that by naturally encouraging the LLM to reuse the previously developed and verified sub-modules, CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35% on APPS and 76% on CodeContests.

Code Generation

Universal Graph Continual Learning

no code implementations27 Aug 2023 Thanh Duc Hoang, Do Viet Tung, Duy-Hung Nguyen, Bao-Sinh Nguyen, Huy Hoang Nguyen, Hung Le

We address catastrophic forgetting issues in graph learning as incoming data transits from one to another graph distribution.

Continual Learning Graph Classification +2

LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient Querying

1 code implementation21 Aug 2023 Thommen George Karimpanal, Laknath Buddhika Semage, Santu Rana, Hung Le, Truyen Tran, Sunil Gupta, Svetha Venkatesh

To address this issue, we introduce SEQ (sample efficient querying), where we simultaneously train a secondary RL agent to decide when the LLM should be queried for solutions.

Decision Making reinforcement-learning +1

Beyond Surprise: Improving Exploration Through Surprise Novelty

1 code implementation9 Aug 2023 Hung Le, Kien Do, Dung Nguyen, Svetha Venkatesh

We present a new computing model for intrinsic rewards in reinforcement learning that addresses the limitations of existing surprise-driven explorations.

Atari Games Retrieval

CodeTF: One-stop Transformer Library for State-of-the-art Code LLM

1 code implementation31 May 2023 Nghi D. Q. Bui, Hung Le, Yue Wang, Junnan Li, Akhilesh Deepak Gotmare, Steven C. H. Hoi

In this paper, we present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.

CodeT5+: Open Code Large Language Models for Code Understanding and Generation

2 code implementations13 May 2023 Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, Steven C. H. Hoi

To address these limitations, we propose ``CodeT5+'', a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks.

Arithmetic Reasoning Code Completion +5

When Giant Language Brains Just Aren't Enough! Domain Pizzazz with Knowledge Sparkle Dust

no code implementations12 May 2023 Minh-Tien Nguyen, Duy-Hung Nguyen, Shahab Sabahi, Hung Le, Jeff Yang, Hajime Hotta

Based on the task we design a new model relied on LLMs which are empowered by additional knowledge extracted from insurance policy rulebooks and DBpedia.

Domain Adaptation Question Answering

Memory-Augmented Theory of Mind Network

no code implementations17 Jan 2023 Dung Nguyen, Phuoc Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran

Social reasoning necessitates the capacity of theory of mind (ToM), the ability to contextualise and attribute mental states to others without having access to their internal cognitive structure.

Attribute

Improving Document Image Understanding with Reinforcement Finetuning

no code implementations26 Sep 2022 Bao-Sinh Nguyen, Dung Tien Le, Hieu M. Vu, Tuan Anh D. Nguyen, Minh-Tien Nguyen, Hung Le

In this paper, we investigate the problem of improving the performance of Artificial Intelligence systems in understanding document images, especially in cases where training data is limited.

Reinforcement Learning (RL)

Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation

no code implementations21 Sep 2022 Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh

Since the EMA generator can be considered as an ensemble of the generator's old versions and often undergoes a smaller change in updates compared to the generator, training on its synthetic samples can help the student recall the past knowledge and prevent the student from adapting too quickly to new updates of the generator.

Data-free Knowledge Distillation

LAVIS: A Library for Language-Vision Intelligence

1 code implementation15 Sep 2022 Dongxu Li, Junnan Li, Hung Le, Guangsen Wang, Silvio Savarese, Steven C. H. Hoi

We introduce LAVIS, an open-source deep learning library for LAnguage-VISion research and applications.

Benchmarking Image Captioning +8

CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning

2 code implementations5 Jul 2022 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C. H. Hoi

To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL).

Code Generation Decoder +3

Multimodal Dialogue State Tracking

1 code implementation NAACL 2022 Hung Le, Nancy F. Chen, Steven C. H. Hoi

Specifically, we introduce a novel dialogue state tracking task to track the information of visual objects that are mentioned in video-grounded dialogues.

Dialogue State Tracking Video Understanding

HYCEDIS: HYbrid Confidence Engine for Deep Document Intelligence System

no code implementations1 Jun 2022 Bao-Sinh Nguyen, Quang-Bach Tran, Tuan-Anh Nguyen Dang, Duc Nguyen, Hung Le

Measuring the confidence of AI models is critical for safely deploying AI in real-world industrial systems.

OmniXAI: A Library for Explainable AI

2 code implementations1 Jun 2022 Wenzhuo Yang, Hung Le, Tanmay Laud, Silvio Savarese, Steven C. H. Hoi

We introduce OmniXAI (short for Omni eXplainable AI), an open-source Python library of eXplainable AI (XAI), which offers omni-way explainable AI capabilities and various interpretable machine learning techniques to address the pain points of understanding and interpreting the decisions made by machine learning (ML) in practice.

counterfactual Counterfactual Explanation +5

Learning to Constrain Policy Optimization with Virtual Trust Region

no code implementations20 Apr 2022 Hung Le, Thommen Karimpanal George, Majid Abdolshah, Dung Nguyen, Kien Do, Sunil Gupta, Svetha Venkatesh

We introduce a constrained optimization method for policy gradient reinforcement learning, which uses a virtual trust region to regulate each policy update.

Atari Games Policy Gradient Methods

Learning Theory of Mind via Dynamic Traits Attribution

no code implementations17 Apr 2022 Dung Nguyen, Phuoc Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran

Inspired by the observation that humans often infer the character traits of others, then use it to explain behaviour, we propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.

Future prediction Inductive Bias +1

Episodic Policy Gradient Training

1 code implementation3 Dec 2021 Hung Le, Majid Abdolshah, Thommen K. George, Kien Do, Dung Nguyen, Svetha Venkatesh

We introduce a novel training procedure for policy gradient methods wherein episodic memory is used to optimize the hyperparameters of reinforcement learning algorithms on-the-fly.

Policy Gradient Methods Scheduling

Robust Deep Reinforcement Learning for Extractive Legal Summarization

no code implementations13 Nov 2021 Duy-Hung Nguyen, Bao-Sinh Nguyen, Nguyen Viet Dung Nghiem, Dung Tien Le, Mim Amina Khatun, Minh-Tien Nguyen, Hung Le

Automatic summarization of legal texts is an important and still a challenging task since legal documents are often long and complicated with unusual structures and styles.

reinforcement-learning Reinforcement Learning (RL)

Balanced Q-learning: Combining the Influence of Optimistic and Pessimistic Targets

no code implementations3 Nov 2021 Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh

The optimistic nature of the Q-learning target leads to an overestimation bias, which is an inherent problem associated with standard $Q-$learning.

Q-Learning

Generative Pseudo-Inverse Memory

no code implementations ICLR 2022 Kha Pham, Hung Le, Man Ngo, Truyen Tran, Bao Ho, Svetha Venkatesh

We propose Generative Pseudo-Inverse Memory (GPM), a class of deep generative memory models that are fast to write in and read out.

Denoising

Neural Latent Traversal with Semantic Constraints

no code implementations29 Sep 2021 Majid Abdolshah, Hung Le, Thommen Karimpanal George, Vuong Le, Sunil Gupta, Santu Rana, Svetha Venkatesh

Whilst Generative Adversarial Networks (GANs) generate visually appealing high resolution images, the latent representations (or codes) of these models do not allow controllable changes on the semantic attributes of the generated images.

Plug and Play, Model-Based Reinforcement Learning

no code implementations20 Aug 2021 Majid Abdolshah, Hung Le, Thommen Karimpanal George, Sunil Gupta, Santu Rana, Svetha Venkatesh

This is achieved by representing the global transition dynamics as a union of local transition functions, each with respect to one active object in the scene.

Model-based Reinforcement Learning Object +3

Memory and attention in deep learning

1 code implementation3 Jul 2021 Hung Le

Artificial neural networks model neurons and synapses in the brain by interconnecting computational units via weights, which is a typical class of machine learning algorithms that resembles memory structure.

$C^3$: Compositional Counterfactual Contrastive Learning for Video-grounded Dialogues

no code implementations16 Jun 2021 Hung Le, Nancy F. Chen, Steven C. H. Hoi

Video-grounded dialogue systems aim to integrate video understanding and dialogue understanding to generate responses that are relevant to both the dialogue and video context.

Contrastive Learning counterfactual +3

VGNMN: Video-grounded Neural Module Network to Video-Grounded Language Tasks

no code implementations16 Apr 2021 Hung Le, Nancy F. Chen, Steven C. H. Hoi

Neural module networks (NMN) have achieved success in image-grounded tasks such as Visual Question Answering (VQA) on synthetic images.

Information Retrieval Question Answering +2

DVD: A Diagnostic Dataset for Multi-step Reasoning in Video Grounded Dialogue

1 code implementation ACL 2021 Hung Le, Chinnadhurai Sankar, Seungwhan Moon, Ahmad Beirami, Alborz Geramifard, Satwik Kottur

A video-grounded dialogue system is required to understand both dialogue, which contains semantic dependencies from turn to turn, and video, which contains visual cues of spatial and temporal scene variations.

Object Tracking Visual Reasoning

VilNMN: A Neural Module Network approach to Video-Grounded Language Tasks

no code implementations1 Jan 2021 Hung Le, Nancy F. Chen, Steven Hoi

Neural module networks (NMN) have achieved success in image-grounded tasks such as question answering (QA) on synthetic images.

Information Retrieval Question Answering +1

BiST: Bi-directional Spatio-Temporal Reasoning for Video-Grounded Dialogues

1 code implementation EMNLP 2020 Hung Le, Doyen Sahoo, Nancy F. Chen, Steven C. H. Hoi

Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over multiple dialogue turns.

Neurocoder: Learning General-Purpose Computation Using Stored Neural Programs

no code implementations NeurIPS 2021 Hung Le, Svetha Venkatesh

For the first time a Neural Program is treated as a datum in memory, paving the ways for modular, recursive and procedural neural programming.

Continual Learning Object Recognition

Video-Grounded Dialogues with Pretrained Generation Language Models

no code implementations ACL 2020 Hung Le, Steven C. H. Hoi

Pre-trained language models have shown remarkable success in improving various downstream NLP tasks due to their ability to capture dependencies in textual data and generate natural responses.

Sentence

UniConv: A Unified Conversational Neural Architecture for Multi-domain Task-oriented Dialogues

1 code implementation EMNLP 2020 Hung Le, Doyen Sahoo, Chenghao Liu, Nancy F. Chen, Steven C. H. Hoi

Building an end-to-end conversational agent for multi-domain task-oriented dialogues has been an open challenge for two main reasons.

Dialogue State Tracking

Multimodal Transformer with Pointer Network for the DSTC8 AVSD Challenge

no code implementations25 Feb 2020 Hung Le, Nancy F. Chen

Audio-Visual Scene-Aware Dialog (AVSD) is an extension from Video Question Answering (QA) whereby the dialogue agent is required to generate natural language responses to address user queries and carry on conversations.

Question Answering Video Question Answering

Non-Autoregressive Dialog State Tracking

1 code implementation ICLR 2020 Hung Le, Richard Socher, Steven C. H. Hoi

Recent efforts in Dialogue State Tracking (DST) for task-oriented dialogues have progressed toward open-vocabulary or generation-based approaches where the models can generate slot value candidates from the dialogue history itself.

dialog state tracking Dialogue State Tracking +2

Self-Attentive Associative Memory

1 code implementation ICML 2020 Hung Le, Truyen Tran, Svetha Venkatesh

Heretofore, neural networks with external memory are restricted to single memory with lossy representations of memory interactions.

Diversity Memorization +2

Multimodal Transformer Networks for End-to-End Video-Grounded Dialogue Systems

1 code implementation ACL 2019 Hung Le, Doyen Sahoo, Nancy F. Chen, Steven C. H. Hoi

Developing Video-Grounded Dialogue Systems (VGDS), where a dialogue is conducted based on visual and audio aspects of a given video, is significantly more challenging than traditional image or text-grounded dialogue systems because (1) feature space of videos span across multiple picture frames, making it difficult to obtain semantic information; and (2) a dialogue agent must perceive and process information from different modalities (audio, video, caption, etc.)

Dialogue State Tracking Response Generation

Meta-Learning with Domain Adaptation for Few-Shot Learning under Domain Shift

no code implementations ICLR 2019 Doyen Sahoo, Hung Le, Chenghao Liu, Steven C. H. Hoi

Most existing work assumes that both training and test tasks are drawn from the same distribution, and a large amount of labeled data is available in the training tasks.

Domain Adaptation Few-Shot Learning

Learning to Remember More with Less Memorization

1 code implementation ICLR 2019 Hung Le, Truyen Tran, Svetha Venkatesh

Memory-augmented neural networks consisting of a neural controller and an external memory have shown potentials in long-term sequential learning.

Memorization Sentiment Analysis +2

Variational Memory Encoder-Decoder

1 code implementation NeurIPS 2018 Hung Le, Truyen Tran, Thin Nguyen, Svetha Venkatesh

Introducing variability while maintaining coherence is a core task in learning to generate utterances in conversation.

Decoder

Dual Control Memory Augmented Neural Networks for Treatment Recommendations

no code implementations11 Feb 2018 Hung Le, Truyen Tran, Svetha Venkatesh

The decoding controller generates a treatment sequence, one treatment option at a time.

URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection

3 code implementations9 Feb 2018 Hung Le, Quang Pham, Doyen Sahoo, Steven C. H. Hoi

This approach allows the model to capture several types of semantic information, which was not possible by the existing models.

BIG-bench Machine Learning Feature Engineering +1

DeepProcess: Supporting business process execution using a MANN-based recommender system

1 code implementation3 Feb 2018 Asjad Khan, Hung Le, Kien Do, Truyen Tran, Aditya Ghose, Hoa Dam, Renuka Sindhgatta

Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next.

Activity Prediction Recommendation Systems

What are the Receptive, Effective Receptive, and Projective Fields of Neurons in Convolutional Neural Networks?

no code implementations19 May 2017 Hung Le, Ali Borji

In this work, we explain in detail how receptive fields, effective receptive fields, and projective fields of neurons in different layers, convolution or pooling, of a Convolutional Neural Network (CNN) are calculated.

Cannot find the paper you are looking for? You can Submit a new open access paper.