Search Results for author: Hyemi Kim

Found 3 papers, 0 papers with code

Counterfactual Fairness with Disentangled Causal Effect Variational Autoencoder

no code implementations24 Nov 2020 Hyemi Kim, Seungjae Shin, JoonHo Jang, Kyungwoo Song, Weonyoung Joo, Wanmo Kang, Il-Chul Moon

Therefore, this paper proposes Disentangled Causal Effect Variational Autoencoder (DCEVAE) to resolve this limitation by disentangling the exogenous uncertainty into two latent variables: either 1) independent to interventions or 2) correlated to interventions without causality.

Causal Inference Disentanglement +1

Neutralizing Gender Bias in Word Embeddings with Latent Disentanglement and Counterfactual Generation

no code implementations Findings of the Association for Computational Linguistics 2020 Seungjae Shin, Kyungwoo Song, JoonHo Jang, Hyemi Kim, Weonyoung Joo, Il-Chul Moon

Recent research demonstrates that word embeddings, trained on the human-generated corpus, have strong gender biases in embedding spaces, and these biases can result in the discriminative results from the various downstream tasks.

Disentanglement Word Embeddings

Neutralizing Gender Bias in Word Embedding with Latent Disentanglement and Counterfactual Generation

no code implementations7 Apr 2020 Seungjae Shin, Kyungwoo Song, JoonHo Jang, Hyemi Kim, Weonyoung Joo, Il-Chul Moon

Recent research demonstrates that word embeddings, trained on the human-generated corpus, have strong gender biases in embedding spaces, and these biases can result in the discriminative results from the various downstream tasks.

Disentanglement Sentiment Analysis +1

Cannot find the paper you are looking for? You can Submit a new open access paper.