1 code implementation • 2 Dec 2020 • SBND Collaboration, R. Acciarri, C. Adams, C. Andreopoulos, J. Asaadi, M. Babicz, C. Backhouse, W. Badgett, L. Bagby, D. Barker, V. Basque, Q. Bazetto, M. Betancourt, A. Bhanderi, A. Bhat, C. Bonifazi, D. Brailsford, G. Brandt, T. Brooks, F. Carneiro, Y. Chen, H. Chen, G. Chisnall, I. Crespo-Anadón, E. Cristaldo, C. Cuesta, I., L. de Icaza Astiz, A. De Roeck, G. de Sá Pereira, M. Del Tutto, V. Di Benedetto, A. Ereditato, J. Evans, C. Ezeribe, S. Fitzpatrick, T. Fleming, W. Foreman, D. Franco, I. Furic, P. Furmanski, S. Gao, D. Garcia-Gamez, H. Frandini, G. Ge, I. Gil-Botella, S. Gollapinni, O. Goodwin, P. Green, C. Griffith, R. Guenette, P. Guzowski, T. Ham, J. Henzerling, A. Holin, B. Howard, R., S. Jones, D. Kalra, G. Karagiorgi, L. Kashur, W. Ketchum, M., J. Kim, A. Kudryavtsev, J. Larkin, H. Lay, I. Lepetic, B., R. Littlejohn, W., C. Louis, A., A. Machado, M. Malek, D. Mardsen, C. Mariani, F. Marinho, A. Mastbaum, K. Mavrokoridis, N. McConkey, V. Meddage, P. Méndez, T. Mettler, K. Mistry, A. Mogan, J. Molina, M. Mooney, L. Mora, C., A. Moura, J. Mousseau, A. Navrer-Agasson, F., J. Nicolas-Arnaldos, A. Nowak, O. Palamara, V. Pandey, J. Pater, L. Paulucci, V., L. Pimentel, F. Psihas, G. Putnam, X. Qian, E. Raguzin, H. Ray, M. Reggiani-Guzzo, D. Rivera, M. Roda, M. Ross-Lonergan, G. Scanavini, A. Scarff, D., W. Schmitz, A. Schukraft, E. Segreto, M. Soares Nunes, M. Soderberg, S. Söldner-Rembold, J. Spitz, N., J., C. Spooner, M. Stancari, V. Stenico, A. Szelc, W. Tang, J. Tena Vidal, D. Torretta, M. Toups, C. Touramanis, M. Tripathi, S. Tufanli, E. Tyley, G., A. Valdiviesso, E. Worcester, M. Worcester, G. Yarbrough, J. Yu, B. Zamorano, J. Zennamo, A. Zglam
In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded.
Semantic Segmentation
Data Analysis, Statistics and Probability
1 code implementation • Computer Physics Communications 2019 • Chmiela, S., Sauceda, H. E., Poltavsky, I., Müller, K.-R., Tkatchenko, A.
We present an optimized implementation of the recently proposed symmetric gradient domain machine learning (sGDML) model.
1 code implementation • Science Advances 2017 • Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schütt, K. T., Müller, K.-R.
Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories.