1 code implementation • 7 Mar 2022 • Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, Jianfeng Gao
Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively so for neural networks (NNs) with billions of parameters.
1 code implementation • DeepMind 2022 • Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, Oriol Vinyals
Programming is a powerful and ubiquitous problem-solving tool.
Ranked #1 on
Code Generation
on CodeContests
1 code implementation • 3 Feb 2022 • Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, Ilya Sutskever
We explore the use of expert iteration in the context of language modeling applied to formal mathematics.
Ranked #3 on
Automated Theorem Proving
on miniF2F-test
(using extra training data)
4 code implementations • 6 Jan 2022 • Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, Vedant Misra
In this paper we propose to study generalization of neural networks on small algorithmically generated datasets.
no code implementations • NA 2021 • Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent SIfre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving
Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world.
Ranked #1 on
Abstract Algebra
on BIG-bench
1 code implementation • NeurIPS 2021 • Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, Jianfeng Gao
Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively so for neural networks (NNs) with billions of parameters. We show that, in the recently discovered Maximal Update Parametrization ($\mu$P), many optimal HPs remain stable even as model size changes.
no code implementations • 11 Oct 2021 • Jesse Michael Han, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao Xu, Stanislas Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, Ilya Sutskever
We show how to derive state-of-the-art unsupervised neural machine translation systems from generatively pre-trained language models.
9 code implementations • 7 Jul 2021 • Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, Wojciech Zaremba
We introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and study its Python code-writing capabilities.
Ranked #1 on
Multi-task Language Understanding
on BBH-alg
1 code implementation • 2 Oct 2019 • John F. J. Mellor, Eunbyung Park, Yaroslav Ganin, Igor Babuschkin, tejas kulkarni, Dan Rosenbaum, Andy Ballard, Theophane Weber, Oriol Vinyals, S. M. Ali Eslami
We investigate using reinforcement learning agents as generative models of images (extending arXiv:1804. 01118).
no code implementations • ICLR 2019 • Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia
We introduce an approach for augmenting model-free deep reinforcement learning agents with a mechanism for relational reasoning over structured representations, which improves performance, learning efficiency, generalization, and interpretability.
7 code implementations • 5 Jun 2018 • Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning.
2 code implementations • ICML 2018 • Yaroslav Ganin, tejas kulkarni, Igor Babuschkin, S. M. Ali Eslami, Oriol Vinyals
Advances in deep generative networks have led to impressive results in recent years.
2 code implementations • ICML 2018 • Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C. Cobo, Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov, Demis Hassabis
The recently-developed WaveNet architecture is the current state of the art in realistic speech synthesis, consistently rated as more natural sounding for many different languages than any previous system.
1 code implementation • 3 Mar 2017 • Andrey Ustyuzhanin, Timothy Daniel Head, Igor Babuschkin, Alexander Tiunov
Version control systems like git help with the workflow and analysis scripts part.
Computers and Society Distributed, Parallel, and Cluster Computing