no code implementations • 29 Feb 2024 • Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell, Koushil Sreenath, Jitendra Malik
We cast real-world humanoid control as a next token prediction problem, akin to predicting the next word in language.
1 code implementation • CVPR 2024 • Georgios Pavlakos, Dandan Shan, Ilija Radosavovic, Angjoo Kanazawa, David Fouhey, Jitendra Malik
The key to HaMeR's success lies in scaling up both the data used for training and the capacity of the deep network for hand reconstruction.
Ranked #2 on 3D Hand Pose Estimation on HO-3D v2
no code implementations • 16 Jun 2023 • Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg, Trevor Darrell, Jitendra Malik
We present a self-supervised sensorimotor pre-training approach for robotics.
no code implementations • 6 Mar 2023 • Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, Koushil Sreenath
Humanoid robots that can autonomously operate in diverse environments have the potential to help address labour shortages in factories, assist elderly at homes, and colonize new planets.
no code implementations • 23 Nov 2022 • Austin Patel, Andrew Wang, Ilija Radosavovic, Jitendra Malik
In this paper we make two main contributions: (1) a novel reconstruction technique RHOV (Reconstructing Hands and Objects from Videos), which reconstructs 4D trajectories of both the hand and the object using 2D image cues and temporal smoothness constraints; (2) a system for imitating object interactions in a physics simulator with reinforcement learning.
1 code implementation • 6 Oct 2022 • Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, Trevor Darrell
Finally, we train a 307M parameter vision transformer on a massive collection of 4. 5M images from the Internet and egocentric videos, and demonstrate clearly the benefits of scaling visual pre-training for robot learning.
1 code implementation • 26 Sep 2022 • William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, Jitendra Malik
We explore a data-driven approach for learning to optimize neural networks.
1 code implementation • 11 Mar 2022 • Tete Xiao, Ilija Radosavovic, Trevor Darrell, Jitendra Malik
This paper shows that self-supervised visual pre-training from real-world images is effective for learning motor control tasks from pixels.
8 code implementations • CVPR 2022 • Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei HUANG, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, Jitendra Malik
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite.
no code implementations • ICCV 2021 • Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, Jitendra Malik
In this work we explore reconstructing hand-object interactions in the wild.
no code implementations • 7 Apr 2020 • Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, Jitendra Malik
To tackle this setting, we train an inverse dynamics model and use it to predict actions for state-only demonstrations.
24 code implementations • CVPR 2020 • Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár
In this work, we present a new network design paradigm.
Ranked #1 on Out-of-Distribution Generalization on ImageNet-W
4 code implementations • ICCV 2019 • Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, Piotr Dollár
Compared to current methodologies of comparing point and curve estimates of model families, distribution estimates paint a more complete picture of the entire design landscape.
2 code implementations • CVPR 2019 • Kevis-Kokitsi Maninis, Ilija Radosavovic, Iasonas Kokkinos
In this work we address task interference in universal networks by considering that a network is trained on multiple tasks, but performs one task at a time, an approach we refer to as "single-tasking multiple tasks".
4 code implementations • CVPR 2018 • Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, Kaiming He
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data.