Search Results for author: Ilya Kolmanovsky

Found 39 papers, 3 papers with code

Constrained Control for Autonomous Spacecraft Rendezvous: Learning-Based Time Shift Governor

no code implementations7 Dec 2024 Taehyeun Kim, Robin Inho Kee, Ilya Kolmanovsky, Anouck Girard

This paper develops a Time Shift Governor (TSG)-based control scheme to enforce constraints during rendezvous and docking (RD) missions in the setting of the Two-Body problem.

CIKAN: Constraint Informed Kolmogorov-Arnold Networks for Autonomous Spacecraft Rendezvous using Time Shift Governor

no code implementations4 Dec 2024 Taehyeun Kim, Anouck Girard, Ilya Kolmanovsky

The paper considers a Constrained-Informed Neural Network (CINN) approximation for the Time Shift Governor (TSG), which is an add-on scheme to the nominal closed-loop system used to enforce constraints by time-shifting the reference trajectory in spacecraft rendezvous applications.

Kolmogorov-Arnold Networks

Time Shift Governor for Constrained Control of Spacecraft Orbit and Attitude Relative Motion in Bicircular Restricted Four-Body Problem

no code implementations15 Jul 2024 Taehyeun Kim, Ilya Kolmanovsky, Anouck Girard

This paper considers constrained spacecraft rendezvous and docking (RVD) in the setting of the Bicircular Restricted Four-Body Problem (BCR4BP), while accounting for attitude dynamics.

Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control

no code implementations22 Mar 2024 Xiao Li, H. Eric Tseng, Anouck Girard, Ilya Kolmanovsky

In the scenario of Adaptive Cruise Control (ACC), we employ the Deep Ensemble to estimate distance headway to the lead vehicle from RGB images and enable the downstream controller to account for the estimation uncertainty.

Autonomous Driving Decision Making +1

Nonlinear Model Predictive Detumbling of Small Satellites with a Single-axis Magnetorquer

no code implementations21 Jan 2024 Kota Kondo, Ilya Kolmanovsky, Yasuhiro Yoshimura, Mai Bando, Shuji Nagasaki, Toshiya Hanada

Magnetic torquers have been extensively investigated for momentum management of spacecraft with momentum wheels and for nutation damping of spin satellites, momentum-biased, and dual-spin satellites.

Less Conservative Robust Reference Governors and Their Applications

no code implementations4 Jan 2024 Miguel Castroviejo-Fernandez, Huayi Li, Andrés Cotorruelo, Emanuele Garone, Ilya Kolmanovsky

The applications of reference governors to systems with unmeasured set-bounded disturbances can lead to conservative solutions.

System-level Safety Guard: Safe Tracking Control through Uncertain Neural Network Dynamics Models

1 code implementation11 Dec 2023 Xiao Li, Yutong Li, Anouck Girard, Ilya Kolmanovsky

The Neural Network (NN), as a black-box function approximator, has been considered in many control and robotics applications.

Robot Navigation

Minimum-Time Trajectory Optimization With Data-Based Models: A Linear Programming Approach

no code implementations10 Dec 2023 Nan Li, Ehsan Taheri, Ilya Kolmanovsky, Dimitar Filev

In this paper, we develop a computationally-efficient approach to minimum-time trajectory optimization using input-output data-based models, to produce an end-to-end data-to-control solution to time-optimal planning/control of dynamic systems and hence facilitate their autonomous operation.

Motion Planning Trajectory Planning +1

Game Projection and Robustness for Game-Theoretic Autonomous Driving

no code implementations29 Nov 2023 Mushuang Liu, H. Eric Tseng, Dimitar Filev, Anouck Girard, Ilya Kolmanovsky

This paper defines the robustness margin of a game solution as the maximum magnitude of cost function deviations that can be accommodated in a game without changing the optimality of the game solution.

Autonomous Driving Decision Making

Model Predictive Control of Diesel Engine Emissions Based on Neural Network Modeling

no code implementations6 Nov 2023 Jiadi Zhang, Xiao Li, Ilya Kolmanovsky, Munechika Tsutsumi, Hayato Nakada

The developments described in the paper are based on a high-fidelity model of the engine airpath and torque response in GT-Power, which is extended with a feedforward neural network (FNN)-based model of engine out (feedgas) emissions identified from experimental engine data to enable the controller co-simulation and performance verification.

Model Predictive Control

Modeling and Control of Diesel Engine Emissions using Multi-layer Neural Networks and Economic Model Predictive Control

no code implementations6 Nov 2023 Jiadi Zhang, Xiao Li, Mohammad Reza Amini, Ilya Kolmanovsky, Munechika Tsutsumi, Hayato Nakada

This paper presents the results of developing a multi-layer Neural Network (NN) to represent diesel engine emissions and integrating this NN into control design.

Model Predictive Control

Interaction-Aware Decision-Making for Autonomous Vehicles in Forced Merging Scenario Leveraging Social Psychology Factors

no code implementations25 Sep 2023 Xiao Li, Kaiwen Liu, H. Eric Tseng, Anouck Girard, Ilya Kolmanovsky

Understanding the intention of vehicles in the surrounding traffic is crucial for an autonomous vehicle to successfully accomplish its driving tasks in complex traffic scenarios such as highway forced merging.

Autonomous Vehicles Decision Making

Robust Adaptive MPC Using Uncertainty Compensation

no code implementations24 Sep 2023 Ran Tao, Pan Zhao, Ilya Kolmanovsky, Naira Hovakimyan

The performance bounds provided by the L1AC are then used to tighten the state and control constraints of the actual system, and a model predictive controller is designed for the nominal system with the tightened constraints.

Model Predictive Control

Constrained reaction wheel desaturation and attitude control of spacecraft with four reaction wheels

no code implementations10 May 2023 Miguel Castroviejo-Fernandez, Ilya Kolmanovsky

The paper addresses a problem of constrained spacecraft attitude stabilization with simultaneous reaction wheel (RW) desaturation.

Model Predictive Control

On Complexity Bounds for the Maximal Admissible Set of Linear Time-Invariant Systems

no code implementations4 Feb 2023 Hamid R. Ossareh, Ilya Kolmanovsky

Given a dynamical system with constrained outputs, the maximal admissible set (MAS) is defined as the set of all initial conditions such that the output constraints are satisfied for all time.

Safe Control and Learning Using Generalized Action Governor

no code implementations22 Nov 2022 Nan Li, Yutong Li, Ilya Kolmanovsky, Anouck Girard, H. Eric Tseng, Dimitar Filev

This paper introduces the Generalized Action Governor, which is a supervisory scheme for augmenting a nominal closed-loop system with the capability of strictly handling constraints.

reinforcement-learning Reinforcement Learning (RL)

Reference Governor for Input-Constrained MPC to Enforce State Constraints at Lower Computational Cost

no code implementations20 Oct 2022 Miguel Castroviejo Fernandez, Jordan Leung, Ilya Kolmanovsky

In this paper, a control scheme is developed based on an input constrained Model Predictive Controller (MPC) and the idea of modifying the reference command to enforce constraints, usual of Reference Governors (RG).

Integrated Adaptive Control and Reference Governors for Constrained Systems with State-Dependent Uncertainties

no code implementations5 Aug 2022 Pan Zhao, Ilya Kolmanovsky, Naira Hovakimyan

The proposed framework leverages an L1 adaptive controller (L1AC) that estimates and compensates for the uncertainties, and provides guaranteed transient performance, in terms of uniform bounds on the error between actual states and inputs and those of a nominal (i. e., uncertainty-free) system.

Safe and Human-Like Autonomous Driving: A Predictor-Corrector Potential Game Approach

no code implementations4 Aug 2022 Mushuang Liu, H. Eric Tseng, Dimitar Filev, Anouck Girard, Ilya Kolmanovsky

To address the challenges caused by the complexity in solving a multi-player game and by the requirement of real-time operation, a potential game (PG) based decision-making framework is developed.

Autonomous Driving Decision Making

Robust Action Governor for Uncertain Piecewise Affine Systems with Non-convex Constraints and Safe Reinforcement Learning

no code implementations17 Jul 2022 Yutong Li, Nan Li, H. Eric Tseng, Anouck Girard, Dimitar Filev, Ilya Kolmanovsky

The action governor is an add-on scheme to a nominal control loop that monitors and adjusts the control actions to enforce safety specifications expressed as pointwise-in-time state and control constraints.

RAG Reinforcement Learning (RL) +1

Benefits of Feedforward for Model Predictive Airpath Control of Diesel Engines

no code implementations11 May 2022 Jiadi Zhang, Mohammad Reza Amini, Ilya Kolmanovsky, Munechika Tsutsumi, Hayato Nakada

Two options for the feedforward are considered one based on a look-up table that specifies the feedforward as a function of engine speed and fuel injection rate, and another one based on a (non-rate-based) MPC that generates dynamic feedforward trajectories.

Model Predictive Control

Potential Game-Based Decision-Making for Autonomous Driving

no code implementations16 Jan 2022 Mushuang Liu, Ilya Kolmanovsky, H. Eric Tseng, Suzhou Huang, Dimitar Filev, Anouck Girard

Statistical comparative studies, including 1) finite potential game vs. continuous potential game, and 2) best response dynamics vs. potential function optimization, are conducted to compare the performances of different solution algorithms.

Autonomous Driving Decision Making

Interaction-Aware Trajectory Prediction and Planning for Autonomous Vehicles in Forced Merge Scenarios

no code implementations14 Dec 2021 Kaiwen Liu, Nan Li, H. Eric Tseng, Ilya Kolmanovsky, Anouck Girard

Merging is, in general, a challenging task for both human drivers and autonomous vehicles, especially in dense traffic, because the merging vehicle typically needs to interact with other vehicles to identify or create a gap and safely merge into.

Autonomous Vehicles Model Predictive Control +1

A Reference Governor for linear systems with polynomial constraints

no code implementations12 Oct 2021 Laurent Burlion, Rick Schieni, Ilya Kolmanovsky

The paper considers the application of reference governors to linear discrete-time systems with constraints given by polynomial inequalities.

Safe Reinforcement Learning Using Robust Action Governor

no code implementations21 Feb 2021 Yutong Li, Nan Li, H. Eric Tseng, Anouck Girard, Dimitar Filev, Ilya Kolmanovsky

Reinforcement Learning (RL) is essentially a trial-and-error learning procedure which may cause unsafe behavior during the exploration-and-exploitation process.

RAG reinforcement-learning +3

Safe Learning Reference Governor: Theory and Application to Fuel Truck Rollover Avoidance

no code implementations22 Jan 2021 Kaiwen Liu, Nan Li, Ilya Kolmanovsky, Denise Rizzo, Anouck Girard

This paper proposes a learning reference governor (LRG) approach to enforce state and control constraints in systems for which an accurate model is unavailable, and this approach enables the reference governor to gradually improve command tracking performance through learning while enforcing the constraints during learning and after learning is completed.

Game-theoretic Modeling of Traffic in Unsignalized Intersection Network for Autonomous Vehicle Control Verification and Validation

no code implementations16 Oct 2019 Ran Tian, Nan Li, Ilya Kolmanovsky, Yildiray Yildiz, Anouck Girard

For a foreseeable future, autonomous vehicles (AVs) will operate in traffic together with human-driven vehicles.

Robotics Systems and Control Systems and Control

Beating humans in a penny-matching game by leveraging cognitive hierarchy theory and Bayesian learning

no code implementations27 Sep 2019 Ran Tian, Nan Li, Ilya Kolmanovsky, Anouck Girard

It is a long-standing goal of artificial intelligence (AI) to be superior to human beings in decision making.

Decision Making

Quad-rotor Flight Simulation in Realistic Atmospheric Conditions

1 code implementation4 Feb 2019 Behdad Davoudi, Ehsan Taheri, Karthik Duraisamy, Balaji Jayaraman, Ilya Kolmanovsky

A reduced-order version of the atmospheric boundary layer data as well as the popular Dryden model are used to assess the impact of accuracy of the wind field model on the predicted vehicle performance and trajectory.

Fluid Dynamics Atmospheric and Oceanic Physics Applied Physics

FBstab: A proximally stabilized semismooth algorithm for convex quadratic programming

2 code implementations13 Jan 2019 Dominic Liao-McPherson, Ilya Kolmanovsky

This paper introduces the proximally stabilized Fischer-Burmeister method (FBstab); a new algorithm for convex quadratic programming which synergistically combines the proximal point algorithm with a semismooth Newton-type method.

Optimization and Control 90C20, 49M15, 65K05, 65K10

Adaptive Game-Theoretic Decision Making for Autonomous Vehicle Control at Roundabouts

no code implementations1 Oct 2018 Ran Tian, Sisi Li, Nan Li, Ilya Kolmanovsky, Anouck Girard, Yildiray Yildiz

In this paper, we propose a decision making algorithm for autonomous vehicle control at a roundabout intersection.

Decision Making

Game-Theoretic Modeling of Driver and Vehicle Interactions for Verification and Validation of Autonomous Vehicle Control Systems

no code implementations30 Aug 2016 Nan Li, Dave Oyler, Mengxuan Zhang, Yildiray Yildiz, Ilya Kolmanovsky, Anouck Girard

Traffic simulators where these interactions can be modeled and represented with reasonable fidelity can help decrease the time and effort necessary for the development of the autonomous driving control algorithms by providing a venue where acceptable initial control calibrations can be achieved quickly and safely before actual road tests.

Autonomous Driving

Cannot find the paper you are looking for? You can Submit a new open access paper.