1 code implementation • 30 Sep 2024 • Mikhail Shirokikh, Ilya Shenbin, Anton Alekseev, Anna Volodkevich, Alexey Vasilev, Andrey V. Savchenko, Sergey Nikolenko
We develop and evaluate neural architectures to model the user behavior in recommender systems (RS) inspired by click models for Web search but going beyond standard click models.
1 code implementation • 20 Jun 2024 • Kuzma Khrabrov, Anton Ber, Artem Tsypin, Konstantin Ushenin, Egor Rumiantsev, Alexander Telepov, Dmitry Protasov, Ilya Shenbin, Anton Alekseev, Mikhail Shirokikh, Sergey Nikolenko, Elena Tutubalina, Artur Kadurin
Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science.
1 code implementation • 31 May 2024 • Ilya Shenbin, Sergey Nikolenko
We present ImplicitSLIM, a novel unsupervised learning approach for sparse high-dimensional data, with applications to collaborative filtering.
no code implementations • 18 Jul 2023 • Mikhail Shirokikh, Ilya Shenbin, Anton Alekseev, Sergey Nikolenko
Boolean satisfiability (SAT) is a fundamental NP-complete problem with many applications, including automated planning and scheduling.
1 code implementation • 24 Jun 2022 • Michael Vasilkovsky, Anton Alekseev, Valentin Malykh, Ilya Shenbin, Elena Tutubalina, Dmitriy Salikhov, Mikhail Stepnov, Andrey Chertok, Sergey Nikolenko
Our model sets the new state of the art performance of 67. 7% F1 on CaRB evaluated as OIE2016 while being 3. 35x faster at inference than previous state of the art.
Ranked #1 on Open Information Extraction on LSOIE
3 code implementations • 24 Dec 2019 • Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, Sergey I. Nikolenko
Recent research has shown the advantages of using autoencoders based on deep neural networks for collaborative filtering.
Ranked #1 on Recommendation Systems on MovieLens 20M (Recall@50 metric)
no code implementations • WS 2019 • Elena Tutubalina, Valentin Malykh, Sergey Nikolenko, Anton Alekseev, Ilya Shenbin
We propose a novel Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items.
no code implementations • 23 Jan 2019 • Sergey I. Nikolenko, Elena Tutubalina, Valentin Malykh, Ilya Shenbin, Anton Alekseev
We propose a novel end-to-end Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items and at the same time discovers coherent aspects of reviews that can be used to explain predictions or profile users.