Search Results for author: Jacob Buckman

Found 10 papers, 5 papers with code

Neural Regression For Scale-Varying Targets

1 code implementation14 Nov 2022 Adam Khakhar, Jacob Buckman

In this work, we demonstrate that a major limitation of regression using a mean-squared error loss is its sensitivity to the scale of its targets.

regression

When does return-conditioned supervised learning work for offline reinforcement learning?

1 code implementation2 Jun 2022 David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, Joan Bruna

Several recent works have proposed a class of algorithms for the offline reinforcement learning (RL) problem that we will refer to as return-conditioned supervised learning (RCSL).

D4RL reinforcement-learning +1

Non-Markovian policies occupancy measures

no code implementations27 May 2022 Romain Laroche, Remi Tachet des Combes, Jacob Buckman

A central object of study in Reinforcement Learning (RL) is the Markovian policy, in which an agent's actions are chosen from a memoryless probability distribution, conditioned only on its current state.

reinforcement-learning Reinforcement Learning (RL)

The Importance of Pessimism in Fixed-Dataset Policy Optimization

1 code implementation ICLR 2021 Jacob Buckman, Carles Gelada, Marc G. Bellemare

To avoid this, algorithms can follow the pessimism principle, which states that we should choose the policy which acts optimally in the worst possible world.

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

no code implementations6 Jun 2019 Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare

We show that the optimization of these objectives guarantees (1) the quality of the latent space as a representation of the state space and (2) the quality of the DeepMDP as a model of the environment.

Reinforcement Learning (RL) Representation Learning

Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion

2 code implementations NeurIPS 2018 Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, Honglak Lee

Integrating model-free and model-based approaches in reinforcement learning has the potential to achieve the high performance of model-free algorithms with low sample complexity.

Continuous Control reinforcement-learning +1

Neural Lattice Language Models

1 code implementation TACL 2018 Jacob Buckman, Graham Neubig

In this work, we propose a new language modeling paradigm that has the ability to perform both prediction and moderation of information flow at multiple granularities: neural lattice language models.

Language Modelling Sentence

Is Generator Conditioning Causally Related to GAN Performance?

no code implementations ICML 2018 Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B. Brown, Christopher Olah, Colin Raffel, Ian Goodfellow

Motivated by this, we study the distribution of singular values of the Jacobian of the generator in Generative Adversarial Networks (GANs).

Thermometer Encoding: One Hot Way To Resist Adversarial Examples

no code implementations ICLR 2018 Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow

It is well known that it is possible to construct "adversarial examples" for neural networks: inputs which are misclassified by the network yet indistinguishable from true data.

Cannot find the paper you are looking for? You can Submit a new open access paper.