no code implementations • 15 Nov 2024 • Zhichen Zeng, Xiaolong Liu, Mengyue Hang, Xiaoyi Liu, Qinghai Zhou, Chaofei Yang, Yiqun Liu, Yichen Ruan, Laming Chen, Yuxin Chen, Yujia Hao, Jiaqi Xu, Jade Nie, Xi Liu, Buyun Zhang, Wei Wen, Siyang Yuan, Kai Wang, Wen-Yen Chen, Yiping Han, Huayu Li, Chunzhi Yang, Bo Long, Philip S. Yu, Hanghang Tong, Jiyan Yang
A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction.
1 code implementation • 4 Mar 2024 • Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo, Yanli Zhao, Shen Li, Yuchen Hao, Yantao Yao, Guna Lakshminarayanan, Ellie Dingqiao Wen, Jongsoo Park, Maxim Naumov, Wenlin Chen
Scaling laws play an instrumental role in the sustainable improvement in model quality.
1 code implementation • 3 May 2023 • Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen Huang, Yuandong Tian, Arun Kejariwal, Xia Hu
In this work, we explore a "pre-train, and search" paradigm for efficient sharding.
1 code implementation • 12 Aug 2022 • Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, Xia Hu
This is a significant design challenge of distributed systems named embedding table sharding, i. e., how we should partition the embedding tables to balance the costs across devices, which is a non-trivial task because 1) it is hard to efficiently and precisely measure the cost, and 2) the partition problem is known to be NP-hard.
no code implementations • 12 Apr 2021 • Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, Vijay Rao
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers.
no code implementations • 11 Nov 2020 • Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, Kim Hazelwood
The use of GPUs has proliferated for machine learning workflows and is now considered mainstream for many deep learning models.