no code implementations • 7 Aug 2024 • Markus Ditlev Sjøgren Olsen, Jakob Ambsdorf, Manxi Lin, Caroline Taksøe-Vester, Morten Bo Søndergaard Svendsen, Anders Nymark Christensen, Mads Nielsen, Martin Grønnebæk Tolsgaard, Aasa Feragen, Paraskevas Pegios
Our experiments on a real-world clinical dataset show the potential of using unsupervised methods for fetal brain anomaly detection.
1 code implementation • 1 Aug 2024 • Asbjørn Munk, Jakob Ambsdorf, Sebastian Llambias, Mads Nielsen
This study investigates the impact of self-supervised pretraining of 3D semantic segmentation models on a large-scale, domain-specific dataset.
1 code implementation • 29 Jul 2024 • Sebastian Nørgaard Llambias, Julia Machnio, Asbjørn Munk, Jakob Ambsdorf, Mads Nielsen, Mostafa Mehdipour Ghazi
Medical image analysis using deep learning frameworks has advanced healthcare by automating complex tasks, but many existing frameworks lack flexibility, modularity, and user-friendliness.
no code implementations • 13 Feb 2024 • Manxi Lin, Jakob Ambsdorf, Emilie Pi Fogtmann Sejer, Zahra Bashir, Chun Kit Wong, Paraskevas Pegios, Alberto Raheli, Morten Bo Søndergaard Svendsen, Mads Nielsen, Martin Grønnebæk Tolsgaard, Anders Nymark Christensen, Aasa Feragen
We introduce the notion of semantic image quality for applications where image quality relies on semantic requirements.
1 code implementation • 8 Dec 2022 • Björn Plüster, Jakob Ambsdorf, Lukas Braach, Jae Hee Lee, Stefan Wermter
Natural language explanations promise to offer intuitively understandable explanations of a neural network's decision process in complex vision-language tasks, as pursued in recent VL-NLE models.
Ranked #1 on Explanation Generation on VCR
no code implementations • 9 Apr 2022 • Jakob Ambsdorf, Alina Munir, Yiyao Wei, Klaas Degkwitz, Harm Matthias Harms, Susanne Stannek, Kyra Ahrens, Dennis Becker, Erik Strahl, Tom Weber, Stefan Wermter
However, the results show that the robot that explains its moves is perceived as more lively and human-like.