1 code implementation • 18 Feb 2025 • Peter Neidlinger, Tim Lenz, Sebastian Foersch, Chiara M. L. Loeffler, Jan Clusmann, Marco Gustav, Lawrence A. Shaktah, Rupert Langer, Bastian Dislich, Lisa A. Boardman, Amy J. French, Ellen L. Goode, Andrea Gsur, Stefanie Brezina, Marc J. Gunter, Robert Steinfelder, Hans-Michael Behrens, Christoph Röcken, Tabitha Harrison, Ulrike Peters, Amanda I. Phipps, Giuseppe Curigliano, Nicola Fusco, Antonio Marra, Michael Hoffmeister, Hermann Brenner, Jakob Nikolas Kather
Artificial intelligence (AI) has transformed digital pathology by enabling biomarker prediction from high-resolution whole slide images (WSIs).
no code implementations • 17 Feb 2025 • Georg Wölflein, Dyke Ferber, Daniel Truhn, Ognjen Arandjelović, Jakob Nikolas Kather
Tool use has turned large language models (LLMs) into powerful agents that can perform complex multi-step tasks by dynamically utilising external software components.
no code implementations • 25 Nov 2024 • Marta Ligero, Tim Lenz, Georg Wölflein, Omar S. M. El Nahhas, Daniel Truhn, Jakob Nikolas Kather
To date, the most common approach for radiology deep learning pipelines is the use of end-to-end 3D networks based on models pre-trained on other tasks, followed by fine-tuning on the task at hand.
1 code implementation • 24 Nov 2024 • Gustav Müller-Franzes, Firas Khader, Robert Siepmann, Tianyu Han, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
We introduce the Medical Slice Transformer (MST) framework to adapt 2D self-supervised models for 3D medical image analysis.
Ranked #5 on
Lung Nodule Classification
on LIDC-IDRI
(AUC metric, using extra
training data)
1 code implementation • 20 Nov 2024 • Tim Lenz, Peter Neidlinger, Marta Ligero, Georg Wölflein, Marko van Treeck, Jakob Nikolas Kather
Existing approaches for slide representation learning extend the principles of SSL from patch level learning to entire slides by aligning different augmentations of the slide or by utilizing multimodal data.
no code implementations • 19 Oct 2024 • Gesa Mittmann, Sara Laiouar-Pedari, Hendrik A. Mehrtens, Sarah Haggenmüller, Tabea-Clara Bucher, Tirtha Chanda, Nadine T. Gaisa, Mathias Wagner, Gilbert Georg Klamminger, Tilman T. Rau, Christina Neppl, Eva Maria Compérat, Andreas Gocht, Monika Hämmerle, Niels J. Rupp, Jula Westhoff, Irene Krücken, Maximillian Seidl, Christian M. Schürch, Marcus Bauer, Wiebke Solass, Yu Chun Tam, Florian Weber, Rainer Grobholz, Jaroslaw Augustyniak, Thomas Kalinski, Christian Hörner, Kirsten D. Mertz, Constanze Döring, Andreas Erbersdobler, Gabriele Deubler, Felix Bremmer, Ulrich Sommer, Michael Brodhun, Jon Griffin, Maria Sarah L. Lenon, Kiril Trpkov, Liang Cheng, Fei Chen, Angelique Levi, Guoping Cai, Tri Q. Nguyen, Ali Amin, Alessia Cimadamore, Ahmed Shabaik, Varsha Manucha, Nazeel Ahmad, Nidia Messias, Francesca Sanguedolce, Diana Taheri, Ezra Baraban, Liwei Jia, Rajal B. Shah, Farshid Siadat, Nicole Swarbrick, Kyung Park, Oudai Hassan, Siamak Sakhaie, Michelle R. Downes, Hiroshi Miyamoto, Sean R. Williamson, Tim Holland-Letz, Carolin V. Schneider, Jakob Nikolas Kather, Yuri Tolkach, Titus J. Brinker
The aggressiveness of prostate cancer, the most common cancer in men worldwide, is primarily assessed based on histopathological data using the Gleason scoring system.
no code implementations • 20 Sep 2024 • Tirtha Chanda, Sarah Haggenmueller, Tabea-Clara Bucher, Tim Holland-Letz, Harald Kittler, Philipp Tschandl, Markus V. Heppt, Carola Berking, Jochen S. Utikal, Bastian Schilling, Claudia Buerger, Cristian Navarrete-Dechent, Matthias Goebeler, Jakob Nikolas Kather, Carolin V. Schneider, Benjamin Durani, Hendrike Durani, Martin Jansen, Juliane Wacker, Joerg Wacker, Reader Study Consortium, Titus J. Brinker
Our findings reveal that XAI systems improved balanced diagnostic accuracy by 2. 8 percentage points relative to standard AI.
1 code implementation • 31 Aug 2024 • Jacqueline Lammert, Nicole Pfarr, Leonid Kuligin, Sonja Mathes, Tobias Dreyer, Luise Modersohn, Patrick Metzger, Dyke Ferber, Jakob Nikolas Kather, Daniel Truhn, Lisa Christine Adams, Keno Kyrill Bressem, Sebastian Lange, Kristina Schwamborn, Martin Boeker, Marion Kiechle, Ulrich A. Schatz, Holger Bronger, Maximilian Tschochohei
Rare gynecological tumors (RGTs) present major clinical challenges due to their low incidence and heterogeneity.
no code implementations • 28 Aug 2024 • Peter Neidlinger, Omar S. M. El Nahhas, Hannah Sophie Muti, Tim Lenz, Michael Hoffmeister, Hermann Brenner, Marko van Treeck, Rupert Langer, Bastian Dislich, Hans Michael Behrens, Christoph Röcken, Sebastian Foersch, Daniel Truhn, Antonio Marra, Oliver Lester Saldanha, Jakob Nikolas Kather
Advancements in artificial intelligence have driven the development of numerous pathology foundation models capable of extracting clinically relevant information.
no code implementations • 22 Jul 2024 • Soroosh Tayebi Arasteh, Mahshad Lotfinia, Keno Bressem, Robert Siepmann, Lisa Adams, Dyke Ferber, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
We evaluate the diagnostic accuracy of various LLMs when answering radiology-specific questions with and without access to additional online information via RAG.
no code implementations • 18 Jul 2024 • Dyke Ferber, Lars Hilgers, Isabella C. Wiest, Marie-Elisabeth Leßmann, Jan Clusmann, Peter Neidlinger, Jiefu Zhu, Georg Wölflein, Jacqueline Lammert, Maximilian Tschochohei, Heiko Böhme, Dirk Jäger, Mihaela Aldea, Daniel Truhn, Christiane Höper, Jakob Nikolas Kather
Matching cancer patients to clinical trials is essential for advancing treatment and patient care.
no code implementations • 23 Jun 2024 • Tianyu Han, Sven Nebelung, Firas Khader, Jakob Nikolas Kather, Daniel Truhn
Denoising diffusion models offer a promising approach to accelerating magnetic resonance imaging (MRI) and producing diagnostic-level images in an unsupervised manner.
no code implementations • 3 Jun 2024 • Firas Khader, Omar S. M. El Nahhas, Tianyu Han, Gustav Müller-Franzes, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The Transformer model has been pivotal in advancing fields such as natural language processing, speech recognition, and computer vision.
no code implementations • 6 Apr 2024 • Dyke Ferber, Omar S. M. El Nahhas, Georg Wölflein, Isabella C. Wiest, Jan Clusmann, Marie-Elisabeth Leßman, Sebastian Foersch, Jacqueline Lammert, Maximilian Tschochohei, Dirk Jäger, Manuel Salto-Tellez, Nikolaus Schultz, Daniel Truhn, Jakob Nikolas Kather
We believe, that our work can serve as a proof-of-concept for more advanced LLM-agents in the medical domain.
no code implementations • 12 Mar 2024 • Dyke Ferber, Georg Wölflein, Isabella C. Wiest, Marta Ligero, Srividhya Sainath, Narmin Ghaffari Laleh, Omar S. M. El Nahhas, Gustav Müller-Franzes, Dirk Jäger, Daniel Truhn, Jakob Nikolas Kather
Medical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models.
no code implementations • 7 Mar 2024 • Tim Lenz, Omar S. M. El Nahhas, Marta Ligero, Jakob Nikolas Kather
Specifically, we analyzed the effects of adaptations in data volume, architecture, and algorithms on downstream classification tasks, emphasizing their impact on computational resources.
1 code implementation • 6 Mar 2024 • Omar S. M. El Nahhas, Georg Wölflein, Marta Ligero, Tim Lenz, Marko van Treeck, Firas Khader, Daniel Truhn, Jakob Nikolas Kather
Deep Learning (DL) can predict biomarkers directly from digitized cancer histology in a weakly-supervised setting.
1 code implementation • 1 Feb 2024 • Salman Ul Hassan Dar, Marvin Seyfarth, Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoenberg, Robert Malte Siepmann, Fabian Christopher Laqua, Jannik Kahmann, Norbert Frey, Bettina Baeßler, Sebastian Foersch, Daniel Truhn, Jakob Nikolas Kather, Sandy Engelhardt
Collectively, our results emphasize the importance of carefully training generative models on private medical imaging datasets, and examining the synthetic data to ensure patient privacy before sharing it for medical research and applications.
1 code implementation • 25 Jan 2024 • Lisa Adams, Felix Busch, Tianyu Han, Jean-Baptiste Excoffier, Matthieu Ortala, Alexander Löser, Hugo JWL. Aerts, Jakob Nikolas Kather, Daniel Truhn, Keno Bressem
However, all models struggled significantly in tasks requiring the identification of missing information, highlighting a critical area for improvement in clinical data interpretation.
1 code implementation • 18 Dec 2023 • Omar S. M. El Nahhas, Marko van Treeck, Georg Wölflein, Michaela Unger, Marta Ligero, Tim Lenz, Sophia J. Wagner, Katherine J. Hewitt, Firas Khader, Sebastian Foersch, Daniel Truhn, Jakob Nikolas Kather
Hematoxylin- and eosin (H&E) stained whole-slide images (WSIs) are the foundation of diagnosis of cancer.
Ranked #1 on
Classification
on TCGA
1 code implementation • 20 Nov 2023 • Georg Wölflein, Dyke Ferber, Asier R. Meneghetti, Omar S. M. El Nahhas, Daniel Truhn, Zunamys I. Carrero, David J. Harrison, Ognjen Arandjelović, Jakob Nikolas Kather
2) Which feature extractors are best for downstream slide-level classification?
1 code implementation • 29 Sep 2023 • Tianyu Han, Sven Nebelung, Firas Khader, Tianci Wang, Gustav Mueller-Franzes, Christiane Kuhl, Sebastian Försch, Jens Kleesiek, Christoph Haarburger, Keno K. Bressem, Jakob Nikolas Kather, Daniel Truhn
We validate our findings in a set of 1, 038 incorrect biomedical facts.
1 code implementation • 27 Aug 2023 • Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl, Jakob Nikolas Kather, Daniel Truhn, Sven Nebelung
A knowledge gap persists between machine learning (ML) developers (e. g., data scientists) and practitioners (e. g., clinicians), hampering the full utilization of ML for clinical data analysis.
2 code implementations • 15 Aug 2023 • Soroosh Tayebi Arasteh, Leo Misera, Jakob Nikolas Kather, Daniel Truhn, Sven Nebelung
In this study, we explored if SSL for pre-training on non-medical images can be applied to chest radiographs and how it compares to supervised pre-training on non-medical images and on medical images.
no code implementations • 11 May 2023 • Firas Khader, Jakob Nikolas Kather, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
However, while the conventional transformer allows for a simultaneous processing of a large set of input tokens, the computational demand scales quadratically with the number of input tokens and thus quadratically with the number of image patches.
1 code implementation • 18 Apr 2023 • Gustav Müller-Franzes, Fritz Müller-Franzes, Luisa Huck, Vanessa Raaff, Eva Kemmer, Firas Khader, Soroosh Tayebi Arasteh, Teresa Nolte, Jakob Nikolas Kather, Sven Nebelung, Christiane Kuhl, Daniel Truhn
Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement.
1 code implementation • 11 Apr 2023 • Omar S. M. El Nahhas, Chiara M. L. Loeffler, Zunamys I. Carrero, Marko van Treeck, Fiona R. Kolbinger, Katherine J. Hewitt, Hannah S. Muti, Mara Graziani, Qinghe Zeng, Julien Calderaro, Nadina Ortiz-Brüchle, Tanwei Yuan, Michael Hoffmeister, Hermann Brenner, Alexander Brobeil, Jorge S. Reis-Filho, Jakob Nikolas Kather
We tested our method for multiple clinically and biologically relevant biomarkers: homologous repair deficiency (HRD) score, a clinically used pan-cancer biomarker, as well as markers of key biological processes in the tumor microenvironment.
2 code implementations • 23 Jan 2023 • Sophia J. Wagner, Daniel Reisenbüchler, Nicholas P. West, Jan Moritz Niehues, Gregory Patrick Veldhuizen, Philip Quirke, Heike I. Grabsch, Piet A. van den Brandt, Gordon G. A. Hutchins, Susan D. Richman, Tanwei Yuan, Rupert Langer, Josien Christina Anna Jenniskens, Kelly Offermans, Wolfram Mueller, Richard Gray, Stephen B. Gruber, Joel K. Greenson, Gad Rennert, Joseph D. Bonner, Daniel Schmolze, Jacqueline A. James, Maurice B. Loughrey, Manuel Salto-Tellez, Hermann Brenner, Michael Hoffmeister, Daniel Truhn, Julia A. Schnabel, Melanie Boxberg, Tingying Peng, Jakob Nikolas Kather
Methods: In this study, we developed a new fully transformer-based pipeline for end-to-end biomarker prediction from pathology slides.
1 code implementation • 18 Dec 2022 • Firas Khader, Gustav Mueller-Franzes, Tianci Wang, Tianyu Han, Soroosh Tayebi Arasteh, Christoph Haarburger, Johannes Stegmaier, Keno Bressem, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data.
1 code implementation • 14 Dec 2022 • Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger, Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The success of Deep Learning applications critically depends on the quality and scale of the underlying training data.
1 code implementation • 24 Nov 2022 • Soroosh Tayebi Arasteh, Peter Isfort, Marwin Saehn, Gustav Mueller-Franzes, Firas Khader, Jakob Nikolas Kather, Christiane Kuhl, Sven Nebelung, Daniel Truhn
Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL).
1 code implementation • 7 Nov 2022 • Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baessler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0. 91 vs. 0. 95 without vs. with synthetic data).
1 code implementation • 22 Nov 2021 • Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Volkmar Schulz, Christiane Kuhl, Sven Nebelung, Daniel Truhn
We present a generic solution for this problem by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation optimization approach.
no code implementations • MICCAI Workshop COMPAY 2021 • Narmin Ghaffari Laleh, Amelie Echle, Hannah Sophie Muti, Katherine Jane Hewitt, Volkmar Schulz, Jakob Nikolas Kather
Digitized histopathology slides contain a wealth of information, only a fraction of which is being used in clinical routine.