no code implementations • 6 Jul 2022 • Abhinav Anand, Jakob S. Kottmann, Alán Aspuru-Guzik
As we continue to find applications where the currently available noisy devices exhibit an advantage over their classical counterparts, the efficient use of quantum resources is highly desirable.
no code implementations • 21 Jan 2021 • Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, Alán Aspuru-Guzik
We additionally provide a comprehensive overview of various benchmarking and software tools useful for programming and testing NISQ devices.
1 code implementation • 11 Nov 2020 • Jakob S. Kottmann, Abhinav Anand, Alán Aspuru-Guzik
We show that, within our framework, the gradient of an expectation value with respect to a parameterized n-fold fermionic excitation can be evaluated by four expectation values of similar form and size, whereas most standard approaches based on the direct application of the parameter-shift-rule come with an associated cost of O(2^(2n)) expectation values.
Quantum Physics Chemical Physics Computational Physics
4 code implementations • 5 Nov 2020 • Jakob S. Kottmann, Sumner Alperin-Lea, Teresa Tamayo-Mendoza, Alba Cervera-Lierta, Cyrille Lavigne, Tzu-Ching Yen, Vladyslav Verteletskyi, Philipp Schleich, Abhinav Anand, Matthias Degroote, Skylar Chaney, Maha Kesibi, Artur F. Izmaylov, Alán Aspuru-Guzik
As in classical computing, heuristics play a crucial role in the development of new quantum algorithms, resulting in high demand for flexible and reliable ways to implement, test, and share new ideas.
Quantum Physics Chemical Physics Computational Physics
3 code implementations • 28 Sep 2020 • Alba Cervera-Lierta, Jakob S. Kottmann, Alán Aspuru-Guzik
We present the meta-VQE, an algorithm capable to learn the ground state energy profile of a parametrized Hamiltonian.
Quantum Physics
1 code implementation • 6 Aug 2020 • Jakob S. Kottmann, Philipp Schleich, Teresa Tamayo-Mendoza, Alán Aspuru-Guzik
We present a basis-set-free approach to the variational quantum eigensolver using an adaptive representation of the spatial part of molecular wavefunctions.
Quantum Physics Chemical Physics Computational Physics
2 code implementations • 4 Jun 2020 • Jakob S. Kottmann, Mario Krenn, Thi Ha Kyaw, Sumner Alperin-Lea, Alán Aspuru-Guzik
It is not clear how the full potential of large quantum systems can be exploited.
Quantum Physics Computational Physics Optics
no code implementations • 5 Jul 2015 • Robert J. Harrison, Gregory Beylkin, Florian A. Bischoff, Justus A. Calvin, George I. Fann, Jacob Fosso-Tande, Diego Galindo, Jeff R. Hammond, Rebecca Hartman-Baker, Judith C. Hill, Jun Jia, Jakob S. Kottmann, M-J. Yvonne Ou, Laura E. Ratcliff, Matthew G. Reuter, Adam C. Richie-Halford, Nichols A. Romero, Hideo Sekino, William A. Shelton, Bryan E. Sundahl, W. Scott Thornton, Edward F. Valeev, Álvaro Vázquez-Mayagoitia, Nicholas Vence, Yukina Yokoi
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations.
Mathematical Software Computational Engineering, Finance, and Science Numerical Analysis