no code implementations • 1 Apr 2025 • Sayera Dhaubhadel, Jamaludin Mohd-Yusof, Benjamin H. McMahon, Trilce Estrada, Kumkum Ganguly, Adam Spannaus, John P. Gounley, Xiao-Cheng Wu, Eric B. Durbin, Heidi A. Hanson, Tanmoy Bhattacharya
We present a global explainability method to characterize sources of errors in the histology prediction task of our real-world multitask convolutional neural network (MTCNN)-based deep abstaining classifier (DAC), for automated annotation of cancer pathology reports from NCI-SEER registries.
1 code implementation • 18 Mar 2025 • Alexander Partin, Priyanka Vasanthakumari, Oleksandr Narykov, Andreas Wilke, Natasha Koussa, Sara E. Jones, Yitan Zhu, Jamie C. Overbeek, Rajeev Jain, Gayara Demini Fernando, Cesar Sanchez-Villalobos, Cristina Garcia-Cardona, Jamaludin Mohd-Yusof, Nicholas Chia, Justin M. Wozniak, Souparno Ghosh, Ranadip Pal, Thomas S. Brettin, M. Ryan Weil, Rick L. Stevens
To assess model generalization, we introduce a set of evaluation metrics that quantify both absolute performance (e. g., predictive accuracy across datasets) and relative performance (e. g., performance drop compared to within-dataset results), enabling a more comprehensive assessment of model transferability.
no code implementations • 10 Sep 2020 • Sayera Dhaubhadel, Jamaludin Mohd-Yusof, Kumkum Ganguly, Gopinath Chennupati, Sunil Thulasidasan, Nicolas W. Hengartner, Brent J. Mumphrey, Eric B. Durbin, Jennifer A. Doherty, Mireille Lemieux, Noah Schaefferkoetter, Georgia Tourassi, Linda Coyle, Lynne Penberthy, Benjamin H. McMahon, Tanmoy Bhattacharya
We demonstrate an abstaining classifier in a multitask setting for classifying cancer pathology reports from the NCI SEER cancer registries on six tasks of interest.