no code implementations • 25 Feb 2023 • Akila de Silva, Mona Zhao, Donald Stewart, Fahim Hasan Khan, Gregory Dusek, James Davis, Alex Pang
To address this, we treat rip currents as a flow anomaly in an otherwise normal flow.
no code implementations • 14 Feb 2023 • Minghao Liu, Zeyu Cheng, Shen Sang, Jing Liu, James Davis
Compared to direct annotation of labels, the proposed method: produces higher annotator agreements, causes machine learning to generates more consistent predictions, and only requires a marginal cost to add new rendering systems.
no code implementations • 15 Nov 2022 • Shen Sang, Tiancheng Zhi, Guoxian Song, Minghao Liu, Chunpong Lai, Jing Liu, Xiang Wen, James Davis, Linjie Luo
We propose a novel self-supervised learning framework to create high-quality stylized 3D avatars with a mix of continuous and discrete parameters.
no code implementations • CVPR 2022 • Jiahao Luo, Fahim Hasan Khan, Issei Mori, Akila de Silva, Eric Sandoval Ruezga, Minghao Liu, Alex Pang, James Davis
This idealized synthetic analysis is then compared to real results from several methods for constructing 3D faces from 2D photographs.
no code implementations • 4 Feb 2021 • Akila de Silva, Issei Mori, Gregory Dusek, James Davis, Alex Pang
This paper presents a machine learning approach for the automatic identification of rip currents with breaking waves.
no code implementations • 19 Jan 2021 • Jiaheng Wei, Minghao Liu, Jiahao Luo, Andrew Zhu, James Davis, Yang Liu
In this paper, we introduce DuelGAN, a generative adversarial network (GAN) solution to improve the stability of the generated samples and to mitigate mode collapse.
Ranked #3 on
Image Generation
on Fashion-MNIST
1 code implementation • 12 Nov 2020 • Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi, Taher Ahmed Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip Makedonski, Matin Nili Ahmadabadi, Kristof Szabados, Helge Spieker, Matej Madeja, Nathaniel Hoy, Valentina Lenarduzzi, Shangwen Wang, Gema Rodríguez-Pérez, Ricardo Colomo-Palacios, Roberto Verdecchia, Paramvir Singh, Yihao Qin, Debasish Chakroborti, Willard Davis, Vijay Walunj, Hongjun Wu, Diego Marcilio, Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-Katharina Wickert, Ivano Malavolta, Matus Sulir, Fatemeh Fard, Austin Z. Henley, Stratos Kourtzanidis, Eray Tuzun, Christoph Treude, Simin Maleki Shamasbi, Ivan Pashchenko, Marvin Wyrich, James Davis, Alexander Serebrenik, Ella Albrecht, Ethem Utku Aktas, Daniel Strüber, Johannes Erbel
Methods: We use a crowd sourcing approach for manual labeling to validate which changes contribute to bug fixes for each line in bug fixing commits.
Software Engineering
no code implementations • WS 2018 • Jeremy Gwinnup, S, Joshua vick, Michael Hutt, Grant Erdmann, John Duselis, James Davis
AFRL-Ohio State extends its usage of visual domain-driven machine translation for use as a peer with traditional machine translation systems.
no code implementations • 24 Sep 2015 • Andreas Veit, Michael Wilber, Rajan Vaish, Serge Belongie, James Davis, Vishal Anand, Anshu Aviral, Prithvijit Chakrabarty, Yash Chandak, Sidharth Chaturvedi, Chinmaya Devaraj, Ankit Dhall, Utkarsh Dwivedi, Sanket Gupte, Sharath N. Sridhar, Karthik Paga, Anuj Pahuja, Aditya Raisinghani, Ayush Sharma, Shweta Sharma, Darpana Sinha, Nisarg Thakkar, K. Bala Vignesh, Utkarsh Verma, Kanniganti Abhishek, Amod Agrawal, Arya Aishwarya, Aurgho Bhattacharjee, Sarveshwaran Dhanasekar, Venkata Karthik Gullapalli, Shuchita Gupta, Chandana G, Kinjal Jain, Simran Kapur, Meghana Kasula, Shashi Kumar, Parth Kundaliya, Utkarsh Mathur, Alankrit Mishra, Aayush Mudgal, Aditya Nadimpalli, Munakala Sree Nihit, Akanksha Periwal, Ayush Sagar, Ayush Shah, Vikas Sharma, Yashovardhan Sharma, Faizal Siddiqui, Virender Singh, Abhinav S., Anurag. D. Yadav
When crowdsourcing systems are used in combination with machine inference systems in the real world, they benefit the most when the machine system is deeply integrated with the crowd workers.
no code implementations • CVPR 2015 • Changpeng Ti, Ruigang Yang, James Davis, Zhigeng Pan
We present a novel system which incorporates photometric stereo with the Time-of-Flight depth sensor.