Search Results for author: James Voss

Found 5 papers, 1 papers with code

A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA

no code implementations NeurIPS 2015 James Voss, Mikhail Belkin, Luis Rademacher

We propose a new algorithm, PEGI (for pseudo-Euclidean Gradient Iteration), for provable model recovery for ICA with Gaussian noise.

Eigenvectors of Orthogonally Decomposable Functions

no code implementations5 Nov 2014 Mikhail Belkin, Luis Rademacher, James Voss

It includes influential Machine Learning methods such as cumulant-based FastICA and the tensor power iteration for orthogonally decomposable tensors as special cases.

Clustering Topic Models

The Hidden Convexity of Spectral Clustering

1 code implementation4 Mar 2014 James Voss, Mikhail Belkin, Luis Rademacher

Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization.

Clustering

The More, the Merrier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures

no code implementations12 Nov 2013 Joseph Anderson, Mikhail Belkin, Navin Goyal, Luis Rademacher, James Voss

The problem of learning this map can be efficiently solved using some recent results on tensor decompositions and Independent Component Analysis (ICA), thus giving an algorithm for recovering the mixture.

Blind Signal Separation in the Presence of Gaussian Noise

no code implementations7 Nov 2012 Mikhail Belkin, Luis Rademacher, James Voss

In this paper we propose a new algorithm for solving the blind signal separation problem in the presence of additive Gaussian noise, when we are given samples from X=AS+\eta, where \eta is drawn from an unknown, not necessarily spherical n-dimensional Gaussian distribution.

Cannot find the paper you are looking for? You can Submit a new open access paper.