1 code implementation • 15 Sep 2023 • Alina F. Dima, Veronika A. Zimmer, Martin J. Menten, Hongwei Bran Li, Markus Graf, Tristan Lemke, Philipp Raffler, Robert Graf, Jan S. Kirschke, Rickmer Braren, Daniel Rueckert
In this work, we propose a novel method to segment the 3D peripancreatic arteries solely from one annotated 2D projection per training image with depth supervision.
no code implementations • 31 Jul 2023 • Diana Waldmannstetter, Benedikt Wiestler, Julian Schwarting, Ivan Ezhov, Marie Metz, Spyridon Bakas, Bhakti Baheti, Satrajit Chakrabarty, Jan S. Kirschke, Rolf A. Heckemann, Marie Piraud, Florian Kofler, Bjoern H. Menze
Nowadays, registration methods are typically evaluated based on sub-resolution tracking error differences.
1 code implementation • 28 Jun 2023 • Qingqiao Hu, Hao Wang, Jing Luo, Yunhao Luo, Zhiheng Zhangg, Jan S. Kirschke, Benedikt Wiestler, Bjoern Menze, JianGuo Zhang, Hongwei Bran Li
We introduce a novel Bayesian neural network-based architecture to estimate inter-rater uncertainty in medical image segmentation.
no code implementations • 4 Apr 2023 • Diana Waldmannstetter, Benedikt Wiestler, Julian Schwarting, Ivan Ezhov, Marie Metz, Daniel Rueckert, Jan S. Kirschke, Marie Piraud, Florian Kofler, Bjoern H. Menze
Even though simultaneous optimization of similarity metrics represents a standard procedure in the field of semantic segmentation, surprisingly, this does not hold true for image registration.
1 code implementation • 27 Mar 2023 • Julian McGinnis, Suprosanna Shit, Hongwei Bran Li, Vasiliki Sideri-Lampretsa, Robert Graf, Maik Dannecker, Jiazhen Pan, Nil Stolt Ansó, Mark Mühlau, Jan S. Kirschke, Daniel Rueckert, Benedikt Wiestler
Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints.
no code implementations • 21 Mar 2023 • Matthias Keicher, Matan Atad, David Schinz, Alexandra S. Gersing, Sarah C. Foreman, Sophia S. Goller, Juergen Weissinger, Jon Rischewski, Anna-Sophia Dietrich, Benedikt Wiestler, Jan S. Kirschke, Nassir Navab
We then regress the severity of the fracture as a function of the distance to this hyperplane, calibrating the results to the Genant scale.
1 code implementation • 14 Jun 2022 • Moritz Roman Hernandez Petzsche, Ezequiel de la Rosa, Uta Hanning, Roland Wiest, Waldo Enrique Valenzuela Pinilla, Mauricio Reyes, Maria Ines Meyer, Sook-Lei Liew, Florian Kofler, Ivan Ezhov, David Robben, Alexander Hutton, Tassilo Friedrich, Teresa Zarth, Johannes Bürkle, The Anh Baran, Bjoern Menze, Gabriel Broocks, Lukas Meyer, Claus Zimmer, Tobias Boeckh-Behrens, Maria Berndt, Benno Ikenberg, Benedikt Wiestler, Jan S. Kirschke
The test dataset will be used for model validation only and will not be released to the public.
no code implementations • 16 May 2022 • Bailiang Jian, Mohammad Farid Azampour, Francesca De Benetti, Johannes Oberreuter, Christina Bukas, Alexandra S. Gersing, Sarah C. Foreman, Anna-Sophia Dietrich, Jon Rischewski, Jan S. Kirschke, Nassir Navab, Thomas Wendler
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
1 code implementation • 30 Mar 2022 • Paul Engstler, Matthias Keicher, David Schinz, Kristina Mach, Alexandra S. Gersing, Sarah C. Foreman, Sophia S. Goller, Juergen Weissinger, Jon Rischewski, Anna-Sophia Dietrich, Benedikt Wiestler, Jan S. Kirschke, Ashkan Khakzar, Nassir Navab
Do black-box neural network models learn clinically relevant features for fracture diagnosis?
no code implementations • 31 Mar 2021 • Ezequiel de la Rosa, David Robben, Diana M. Sima, Jan S. Kirschke, Bjoern Menze
We show that our approach is able to generate AIFs without any manual annotation, and hence avoiding manual rater's influences.
1 code implementation • 12 Mar 2021 • Christina Bukas, Bailiang Jian, Luis F. Rodriguez Venegas, Francesca De Benetti, Sebastian Ruehling, Anjany Sekuboyina, Jens Gempt, Jan S. Kirschke, Marie Piraud, Johannes Oberreuter, Nassir Navab, Thomas Wendler
The framework uses the patient CT scan and the fractured vertebra label to build a virtual healthy spine using a high-level approach.
1 code implementation • 10 Mar 2021 • Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T. Löffler, Amirhossein Bayat, Malek El Husseini, Giles Tetteh, Katharina Grau, Eva Niederreiter, Thomas Baum, Benedikt Wiestler, Bjoern Menze, Rickmer Braren, Claus Zimmer, Jan S. Kirschke
With the advent of deep learning algorithms, fully automated radiological image analysis is within reach.
no code implementations • 4 Oct 2020 • Ezequiel de la Rosa, Diana M. Sima, Bjoern Menze, Jan S. Kirschke, David Robben
Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irreversibly damaged core lesions.
no code implementations • 23 Sep 2020 • Hanwool Park, Amirhossein Bayat, Mohammad Sabokrou, Jan S. Kirschke, Bjoern H. Menze
This paper presents a novel yet efficient defense framework for segmentation models against adversarial attacks in medical imaging.
no code implementations • 22 Sep 2020 • Amirhossein Bayat, Suprosanna Shit, Adrian Kilian, Jürgen T. Liechtenstein, Jan S. Kirschke, Bjoern H. Menze
The first subnetwork is designed to complete the shape of the downsampled defective skull.
no code implementations • 18 Aug 2020 • Malek Husseini, Anjany Sekuboyina, Maximilian Loeffler, Fernando Navarro, Bjoern H. Menze, Jan S. Kirschke
Building on state-of-art metric losses, we present a novel Grading Loss for learning representations that respect Genant's fracture grading scheme.
no code implementations • 13 Jul 2020 • Amirhossein Bayat, Anjany Sekuboyina, Johannes C. Paetzold, Christian Payer, Darko Stern, Martin Urschler, Jan S. Kirschke, Bjoern H. Menze
The treatment of degenerative spinal disorders requires an understanding of the individual spinal anatomy and curvature in 3D.
2 code implementations • 24 Jan 2020 • Anjany Sekuboyina, Malek E. Husseini, Amirhossein Bayat, Maximilian Löffler, Hans Liebl, Hongwei Li, Giles Tetteh, Jan Kukačka, Christian Payer, Darko Štern, Martin Urschler, Maodong Chen, Dalong Cheng, Nikolas Lessmann, Yujin Hu, Tianfu Wang, Dong Yang, Daguang Xu, Felix Ambellan, Tamaz Amiranashvili, Moritz Ehlke, Hans Lamecker, Sebastian Lehnert, Marilia Lirio, Nicolás Pérez de Olaguer, Heiko Ramm, Manish Sahu, Alexander Tack, Stefan Zachow, Tao Jiang, Xinjun Ma, Christoph Angerman, Xin Wang, Kevin Brown, Alexandre Kirszenberg, Élodie Puybareau, Di Chen, Yiwei Bai, Brandon H. Rapazzo, Timyoas Yeah, Amber Zhang, Shangliang Xu, Feng Hou, Zhiqiang He, Chan Zeng, Zheng Xiangshang, Xu Liming, Tucker J. Netherton, Raymond P. Mumme, Laurence E. Court, Zixun Huang, Chenhang He, Li-Wen Wang, Sai Ho Ling, Lê Duy Huynh, Nicolas Boutry, Roman Jakubicek, Jiri Chmelik, Supriti Mulay, Mohanasankar Sivaprakasam, Johannes C. Paetzold, Suprosanna Shit, Ivan Ezhov, Benedikt Wiestler, Ben Glocker, Alexander Valentinitsch, Markus Rempfler, Björn H. Menze, Jan S. Kirschke
Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel-level by a human-machine hybrid algorithm (https://osf. io/nqjyw/, https://osf. io/t98fz/).
no code implementations • 22 Jul 2019 • Anjany Sekuboyina, Markus Rempfler, Alexander Valentinitsch, Maximilian Loeffler, Jan S. Kirschke, Bjoern H. Menze
We propose an auto-encoding network architecture for point clouds (PC) capable of extracting shape signatures without supervision.
1 code implementation • 29 Apr 2019 • Hongwei Li, Johannes C. Paetzold, Anjany Sekuboyina, Florian Kofler, Jian-Guo Zhang, Jan S. Kirschke, Benedikt Wiestler, Bjoern Menze
Synthesizing MR imaging sequences is highly relevant in clinical practice, as single sequences are often missing or are of poor quality (e. g. due to motion).
no code implementations • 6 Feb 2019 • Anjany Sekuboyina, Markus Rempfler, Alexander Valentinitsch, Bjoern H. Menze, Jan S. Kirschke
Furthermore, we explored two variants of adversarial training schemes that incorporated the anatomical a priori knowledge into the Btrfly Net.
no code implementations • 14 Nov 2018 • Ezequiel de la Rosa, Diana M. Sima, Thijs Vande Vyvere, Jan S. Kirschke, Bjoern Menze
Relevant shape, intensity and texture biomarkers characterizing the different lesions are isolated and a lesion predictive model is built by using Partial Least Squares.
no code implementations • 4 Apr 2018 • Anjany Sekuboyina, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, Bjoern H. Menze
Robust localisation and identification of vertebrae is essential for automated spine analysis.
no code implementations • 13 Mar 2017 • Anjany Sekuboyina, Alexander Valentinitsch, Jan S. Kirschke, Bjoern H. Menze
The first stage employs a multi-layered perceptron performing non-linear regression for locating the lumbar region using the global context.