no code implementations • 5 Jul 2024 • Mahdi Ait Lhaj Loutfi, Teodora Boblea Podasca, Alex Zwanenburg, Taman Upadhaya, Jorge Barrios, David R. Raleigh, William C. Chen, Dante P. I. Capaldi, Hong Zheng, Olivier Gevaert, Jing Wu, Alvin C. Silva, Paul J. Zhang, Harrison X. Bai, Jan Seuntjens, Steffen Löck, Patrick O. Richard, Olivier Morin, Caroline Reinhold, Martin Lepage, Martin Vallières
Purpose: Develop a methodology and tools to identify and explain the smallest set of predictive radiomic features.
no code implementations • 24 Mar 2017 • Martin Vallières, Emily Kay-Rivest, Léo Jean Perrin, Xavier Liem, Christophe Furstoss, Hugo J. W. L. Aerts, Nader Khaouam, Phuc Felix Nguyen-Tan, Chang-Shu Wang, Khalil Sultanem, Jan Seuntjens, Issam El Naqa
In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer.