1 code implementation • 17 Nov 2024 • Minhee Jang, Juheon Son, Thanaporn Viriyasaranon, Junho Kim, Jang-Hwan Choi
The integration of deep learning technologies in medical imaging aims to enhance the efficiency and accuracy of cancer diagnosis, particularly for pancreatic and breast cancers, which present significant diagnostic challenges due to their high mortality rates and complex imaging characteristics.
1 code implementation • 29 Oct 2024 • Sun-Young Jeon, Sen Wang, Adam S. Wang, Garry E. Gold, Jang-Hwan Choi
Noise reduction is crucial for maintaining image quality, especially given such challenges as motion artifacts and the limited availability of clean data in medical imaging.
no code implementations • 9 Dec 2022 • Fabian Wagner, Mareike Thies, Laura Pfaff, Noah Maul, Sabrina Pechmann, Mingxuan Gu, Jonas Utz, Oliver Aust, Daniela Weidner, Georgiana Neag, Stefan Uderhardt, Jang-Hwan Choi, Andreas Maier
We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss.
no code implementations • 24 Feb 2021 • Jennifer Maier, Marlies Nitschke, Jang-Hwan Choi, Garry Gold, Rebecca Fahrig, Bjoern M. Eskofier, Andreas Maier
We perform a simulation study using real motion recorded with an optical tracking system.
no code implementations • 9 Jul 2020 • Jennifer Maier, Marlies Nitschke, Jang-Hwan Choi, Garry Gold, Rebecca Fahrig, Bjoern M. Eskofier, Andreas Maier
In our proposed multi-stage algorithm, these signals are transformed to the global coordinate system of the CT scan and applied for motion compensation during reconstruction.
1 code implementation • 8 May 2020 • Abdelrahman Abdelhamed, Mahmoud Afifi, Radu Timofte, Michael S. Brown, Yue Cao, Zhilu Zhang, WangMeng Zuo, Xiaoling Zhang, Jiye Liu, Wendong Chen, Changyuan Wen, Meng Liu, Shuailin Lv, Yunchao Zhang, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Xiyu Yu, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Songhyun Yu, Bumjun Park, Jechang Jeong, Shuai Liu, Ziyao Zong, Nan Nan, Chenghua Li, Zengli Yang, Long Bao, Shuangquan Wang, Dongwoon Bai, Jungwon Lee, Youngjung Kim, Kyeongha Rho, Changyeop Shin, Sungho Kim, Pengliang Tang, Yiyun Zhao, Yuqian Zhou, Yuchen Fan, Thomas Huang, Zhihao LI, Nisarg A. Shah, Wei Liu, Qiong Yan, Yuzhi Zhao, Marcin Możejko, Tomasz Latkowski, Lukasz Treszczotko, Michał Szafraniuk, Krzysztof Trojanowski, Yanhong Wu, Pablo Navarrete Michelini, Fengshuo Hu, Yunhua Lu, Sujin Kim, Wonjin Kim, Jaayeon Lee, Jang-Hwan Choi, Magauiya Zhussip, Azamat Khassenov, Jong Hyun Kim, Hwechul Cho, Priya Kansal, Sabari Nathan, Zhangyu Ye, Xiwen Lu, Yaqi Wu, Jiangxin Yang, Yanlong Cao, Siliang Tang, Yanpeng Cao, Matteo Maggioni, Ioannis Marras, Thomas Tanay, Gregory Slabaugh, Youliang Yan, Myungjoo Kang, Han-Soo Choi, Kyungmin Song, Shusong Xu, Xiaomu Lu, Tingniao Wang, Chunxia Lei, Bin Liu, Rajat Gupta, Vineet Kumar
This challenge is based on a newly collected validation and testing image datasets, and hence, named SIDD+.
no code implementations • 3 Dec 2019 • Jennifer Maier, Luis Carlos Rivera Monroy, Christopher Syben, Yejin Jeon, Jang-Hwan Choi, Mary Elizabeth Hall, Marc Levenston, Garry Gold, Rebecca Fahrig, Andreas Maier
Analyzing knee cartilage thickness and strain under load can help to further the understanding of the effects of diseases like Osteoarthritis.
no code implementations • 1 Dec 2017 • Andreas Maier, Frank Schebesch, Christopher Syben, Tobias Würfl, Stefan Steidl, Jang-Hwan Choi, Rebecca Fahrig
We demonstrate that use of known transforms is able to change maximal error bounds.