1 code implementation • 20 Apr 2025 • Zheng Chen, Kai Liu, Jue Gong, Jingkai Wang, Lei Sun, Zongwei Wu, Radu Timofte, Yulun Zhang, Xiangyu Kong, Xiaoxuan Yu, Hyunhee Park, Suejin Han, Hakjae Jeon, Dafeng Zhang, Hyung-Ju Chun, Donghun Ryou, Inju Ha, Bohyung Han, Lu Zhao, Yuyi Zhang, Pengyu Yan, Jiawei Hu, Pengwei Liu, Fengjun Guo, Hongyuan Yu, Pufan Xu, Zhijuan Huang, Shuyuan Cui, Peng Guo, Jiahui Liu, Dongkai Zhang, Heng Zhang, Huiyuan Fu, Huadong Ma, Yanhui Guo, Sisi Tian, Xin Liu, Jinwen Liang, Jie Liu, Jie Tang, Gangshan Wu, Zeyu Xiao, Zhuoyuan Li, Yinxiang Zhang, Wenxuan Cai, Vijayalaxmi Ashok Aralikatti, Nikhil Akalwadi, G Gyaneshwar Rao, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudenagudi, Marcos V. Conde, Alejandro Merino, Bruno Longarela, Javier Abad, Weijun Yuan, Zhan Li, Zhanglu Chen, Boyang Yao, Aagam Jain, Milan Kumar Singh, Ankit Kumar, Shubh Kawa, Divyavardhan Singh, Anjali Sarvaiya, Kishor Upla, Raghavendra Ramachandra, Chia-Ming Lee, Yu-Fan Lin, Chih-Chung Hsu, Risheek V Hiremath, Yashaswini Palani, YuXuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Jingwei Liao, Yuqing Yang, Wenda Shao, Junyi Zhao, Qisheng Xu, Kele Xu, Sunder Ali Khowaja, Ik Hyun Lee, Snehal Singh Tomar, Rajarshi Ray, Klaus Mueller, Sachin Chaudhary, Surya Vashisth, Akshay Dudhane, Praful Hambarde, Satya Naryan Tazi, Prashant Patil, Santosh Kumar Vipparthi, Subrahmanyam Murala, Bilel Benjdira, Anas M. Ali, Wadii Boulila, Zahra Moammeri, Ahmad Mahmoudi-Aznaveh, Ali Karbasi, Hossein Motamednia, Liangyan Li, Guanhua Zhao, Kevin Le, Yimo Ning, Haoxuan Huang, Jun Chen
This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025.
3 code implementations • 14 Apr 2025 • Bin Ren, Hang Guo, Lei Sun, Zongwei Wu, Radu Timofte, Yawei Li, Yao Zhang, Xinning Chai, Zhengxue Cheng, Yingsheng Qin, Yucai Yang, Li Song, Hongyuan Yu, Pufan Xu, Cheng Wan, Zhijuan Huang, Peng Guo, Shuyuan Cui, Chenjun Li, Xuehai Hu, Pan Pan, Xin Zhang, Heng Zhang, Qing Luo, Linyan Jiang, Haibo Lei, Qifang Gao, Yaqing Li, Weihua Luo, Tsing Li, Qing Wang, Yi Liu, Yang Wang, Hongyu An, Liou Zhang, Shijie Zhao, Lianhong Song, Long Sun, Jinshan Pan, Jiangxin Dong, Jinhui Tang, Jing Wei, Mengyang Wang, Ruilong Guo, Qian Wang, Qingliang Liu, Yang Cheng, Davinci, Enxuan Gu, Pinxin Liu, Yongsheng Yu, Hang Hua, Yunlong Tang, Shihao Wang, ZhiYu Zhang, Yukun Yang, Jiyu Wu, Jiancheng Huang, Yifan Liu, Yi Huang, Shifeng Chen, Rui Chen, Yi Feng, Mingxi Li, Cailu Wan, XiangJi Wu, Zibin Liu, Jinyang Zhong, Kihwan Yoon, Ganzorig Gankhuyag, Shengyun Zhong, Mingyang Wu, Renjie Li, Yushen Zuo, Zhengzhong Tu, Zongang Gao, Guannan Chen, Yuan Tian, Wenhui Chen, Weijun Yuan, Zhan Li, Yihang Chen, Yifan Deng, Ruting Deng, Yilin Zhang, Huan Zheng, Yanyan Wei, Wenxuan Zhao, Suiyi Zhao, Fei Wang, Kun Li, Yinggan Tang, Mengjie Su, Jae-Hyeon Lee, Dong-Hyeop Son, Ui-Jin Choi, Tiancheng Shao, Yuqing Zhang, Mengcheng Ma, Donggeun Ko, Youngsang Kwak, Jiun Lee, Jaehwa Kwak, YuXuan Jiang, Qiang Zhu, Siyue Teng, Fan Zhang, Shuyuan Zhu, Bing Zeng, David Bull, Jing Hu, Hui Deng, Xuan Zhang, Lin Zhu, Qinrui Fan, Weijian Deng, Junnan Wu, Wenqin Deng, Yuquan Liu, Zhaohong Xu, Jameer Babu Pinjari, Kuldeep Purohit, Zeyu Xiao, Zhuoyuan Li, Surya Vashisth, Akshay Dudhane, Praful Hambarde, Sachin Chaudhary, Satya Naryan Tazi, Prashant Patil, Santosh Kumar Vipparthi, Subrahmanyam Murala, Wei-Chen Shen, I-Hsiang Chen, Yunzhe Xu, Chen Zhao, Zhizhou Chen, Akram Khatami-Rizi, Ahmad Mahmoudi-Aznaveh, Alejandro Merino, Bruno Longarela, Javier Abad, Marcos V. Conde, Simone Bianco, Luca Cogo, Gianmarco Corti
This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR).
1 code implementation • 18 Mar 2025 • Piersilvio De Bartolomeis, Julia Kostin, Javier Abad, Yixin Wang, Fanny Yang
Practical and ethical constraints often require the use of observational data for causal inference, particularly in medicine and social sciences.
2 code implementations • 6 Feb 2025 • Piersilvio De Bartolomeis, Javier Abad, Guanbo Wang, Konstantin Donhauser, Raymond M. Duch, Fanny Yang, Issa J. Dahabreh
Empirical results across several randomized experiments show that our estimator offers substantial precision gains, equivalent to a reduction of up to 20% in the sample size needed to match the same precision as the standard estimator based on experimental data alone.
1 code implementation • 9 Dec 2024 • Javier Abad, Konstantin Donhauser, Francesco Pinto, Fanny Yang
In particular, CP-Fuse adaptively aggregates the model outputs to minimize the reproduction of copyrighted content, adhering to a crucial balancing property that prevents the regurgitation of memorized data.
no code implementations • 29 Jul 2024 • Javier Abad, Konstantin Donhauser, Francesco Pinto, Fanny Yang
The risk of language models unintentionally reproducing copyrighted material from their training data has led to the development of various protective measures.
1 code implementation • 29 Apr 2024 • Piersilvio De Bartolomeis, Javier Abad, Konstantin Donhauser, Fanny Yang
Randomized trials are considered the gold standard for making informed decisions in medicine, yet they often lack generalizability to the patient populations in clinical practice.
1 code implementation • 31 Jan 2024 • Konstantin Donhauser, Javier Abad, Neha Hulkund, Fanny Yang
We present a novel approach for differentially private data synthesis of protected tabular datasets, a relevant task in highly sensitive domains such as healthcare and government.
2 code implementations • 6 Dec 2023 • Piersilvio De Bartolomeis, Javier Abad, Konstantin Donhauser, Fanny Yang
Further, we show how our lower bound can correctly identify the absence and presence of unobserved confounding in a real-world setting.
1 code implementation • 2 Feb 2022 • Javier Abad, Umang Bhatt, Adrian Weller, Giovanni Cherubin
We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e. g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application.