1 code implementation • 12 Feb 2025 • Tommaso Baldi, Javier Campos, Olivia Weng, Caleb Geniesse, Nhan Tran, Ryan Kastner, Alessandro Biondi
In this paper, we propose a method to perform empirical analysis of the loss landscape of machine learning (ML) models.
no code implementations • 24 Jan 2025 • Giuseppe Di Guglielmo, Botao Du, Javier Campos, Alexandra Boltasseva, Akash V. Dixit, Farah Fahim, Zhaxylyk Kudyshev, Santiago Lopez, Ruichao Ma, Gabriel N. Perdue, Nhan Tran, Omer Yesilyurt, Daniel Bowring
We present an end-to-end workflow for superconducting qubit readout that embeds co-designed Neural Networks (NNs) into the Quantum Instrumentation Control Kit (QICK).
no code implementations • 27 Jun 2024 • Tommaso Baldi, Javier Campos, Ben Hawks, Jennifer Ngadiuba, Nhan Tran, Daniel Diaz, Javier Duarte, Ryan Kastner, Andres Meza, Melissa Quinnan, Olivia Weng, Caleb Geniesse, Amir Gholami, Michael W. Mahoney, Vladimir Loncar, Philip Harris, Joshua Agar, Shuyu Qin
Extreme data rate scientific experiments create massive amounts of data that require efficient ML edge processing.
no code implementations • 13 Apr 2023 • Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W. Mahoney, Jovan Mitrevski, Nhan Tran
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware.