Search Results for author: Javier Duarte

Found 27 papers, 15 papers with code

Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges

no code implementations23 Mar 2022 Savannah Thais, Paolo Calafiura, Grigorios Chachamis, Gage DeZoort, Javier Duarte, Sanmay Ganguly, Michael Kagan, Daniel Murnane, Mark S. Neubauer, Kazuhiro Terao

Where previously these sets of data have been formulated as series or image data to match the available machine learning architectures, with the advent of graph neural networks (GNNs), these systems can be learned natively as graphs.

Machine Learning for Particle Flow Reconstruction at CMS

no code implementations1 Mar 2022 Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone

The standard particle flow algorithm reconstructs stable particles based on calorimeter clusters and tracks to provide a global event reconstruction that exploits the combined information of multiple detector subsystems, leading to strong improvements for quantities such as jets and missing transverse energy.

Graph Neural Networks for Charged Particle Tracking on FPGAs

no code implementations3 Dec 2021 Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais, Matthew Trahms

The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC).


Explaining machine-learned particle-flow reconstruction

1 code implementation24 Nov 2021 Farouk Mokhtar, Raghav Kansal, Daniel Diaz, Javier Duarte, Joosep Pata, Maurizio Pierini, Jean-Roch Vlimant

The particle-flow (PF) algorithm is used in general-purpose particle detectors to reconstruct a comprehensive particle-level view of the collision by combining information from different subdetectors.

Decision Making

Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance

1 code implementation24 Nov 2021 Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier Duarte, Sukanya Krishna, Farouk Mokhtar, Jean-Roch Vlimant, Maurizio Pierini

We explore the use of graph-based autoencoders, which operate on jets in their "particle cloud" representations and can leverage the interdependencies among the particles within a jet, for such tasks.

Anomaly Detection

Applications and Techniques for Fast Machine Learning in Science

no code implementations25 Oct 2021 Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.

A FAIR and AI-ready Higgs boson decay dataset

no code implementations4 Aug 2021 Yifan Chen, E. A. Huerta, Javier Duarte, Philip Harris, Daniel S. Katz, Mark S. Neubauer, Daniel Diaz, Farouk Mokhtar, Raghav Kansal, Sang Eon Park, Volodymyr V. Kindratenko, Zhizhen Zhao, Roger Rusack

To enable the reusability of massive scientific datasets by humans and machines, researchers aim to adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data and artificial intelligence (AI) models.


Particle Cloud Generation with Message Passing Generative Adversarial Networks

2 code implementations NeurIPS 2021 Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos

We propose JetNet as a novel point-cloud-style dataset for the ML community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models.

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC

no code implementations4 May 2021 Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin, Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok, Vladimir Loncar, Yingyi Luo, Llovizna Miranda, Jennifer Ngadiuba, Daniel Noonan, Seda Ogrenci-Memik, Maurizio Pierini, Sioni Summers, Nhan Tran

We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile.

Data Compression Quantization

Charged particle tracking via edge-classifying interaction networks

1 code implementation30 Mar 2021 Gage DeZoort, Savannah Thais, Javier Duarte, Vesal Razavimaleki, Markus Atkinson, Isobel Ojalvo, Mark Neubauer, Peter Elmer

Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high energy particle physics.

Edge Classification graph construction

Ps and Qs: Quantization-aware pruning for efficient low latency neural network inference

1 code implementation22 Feb 2021 Benjamin Hawks, Javier Duarte, Nicholas J. Fraser, Alessandro Pappalardo, Nhan Tran, Yaman Umuroglu

We study various configurations of pruning during quantization-aware training, which we term quantization-aware pruning, and the effect of techniques like regularization, batch normalization, and different pruning schemes on performance, computational complexity, and information content metrics.

Neural Architecture Search Quantization

MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks

1 code implementation21 Jan 2021 Joosep Pata, Javier Duarte, Jean-Roch Vlimant, Maurizio Pierini, Maria Spiropulu

In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a comprehensive particle-level view of the event by combining information from the calorimeters and the trackers, significantly improving the detector resolution for jets and the missing transverse momentum.

Graph Neural Networks for Particle Tracking and Reconstruction

no code implementations2 Dec 2020 Javier Duarte, Jean-Roch Vlimant

In this chapter, we recapitulate the mathematical formalism of GNNs and highlight aspects to consider when designing these networks for HEP data, including graph construction, model architectures, learning objectives, and graph pooling.

graph construction High Energy Physics - Phenomenology High Energy Physics - Experiment Data Analysis, Statistics and Probability

Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics

1 code implementation30 Nov 2020 Raghav Kansal, Javier Duarte, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos

We develop a graph generative adversarial network to generate sparse data sets like those produced at the CERN Large Hadron Collider (LHC).

FPGAs-as-a-Service Toolkit (FaaST)

2 code implementations16 Oct 2020 Dylan Sheldon Rankin, Jeffrey Krupa, Philip Harris, Maria Acosta Flechas, Burt Holzman, Thomas Klijnsma, Kevin Pedro, Nhan Tran, Scott Hauck, Shih-Chieh Hsu, Matthew Trahms, Kelvin Lin, Yu Lou, Ta-Wei Ho, Javier Duarte, Mia Liu

Computing needs for high energy physics are already intensive and are expected to increase drastically in the coming years.

Computational Physics Distributed, Parallel, and Cluster Computing High Energy Physics - Experiment Data Analysis, Statistics and Probability Instrumentation and Detectors

Fast inference of Boosted Decision Trees in FPGAs for particle physics

3 code implementations5 Feb 2020 Sioni Summers, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Duc Hoang, Sergo Jindariani, Edward Kreinar, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Dylan Rankin, Nhan Tran, Zhenbin Wu

We describe the implementation of Boosted Decision Trees in the hls4ml library, which allows the translation of a trained model into FPGA firmware through an automated conversion process.


FPGA-accelerated machine learning inference as a service for particle physics computing

1 code implementation18 Apr 2019 Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin Kreis, Brian Lee, Mia Liu, Vladimir Lončar, Jennifer Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini, Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran, Zhenbin Wu

New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains.

Data Analysis, Statistics and Probability High Energy Physics - Experiment Computational Physics Instrumentation and Detectors

Machine Learning in High Energy Physics Community White Paper

no code implementations8 Jul 2018 Kim Albertsson, Piero Altoe, Dustin Anderson, John Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Bjorn Burkle, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Yi-fan Chen, Taylor Childers, Yann Coadou, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Andrea De Simone, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ulrich Heintz, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Sydney Otten, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Wei Sun, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Justin Vasel, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Kun Yang, Omar Zapata

In this document we discuss promising future research and development areas for machine learning in particle physics.

Fast inference of deep neural networks in FPGAs for particle physics

2 code implementations16 Apr 2018 Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran, Zhenbin Wu

For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.

Cannot find the paper you are looking for? You can Submit a new open access paper.