no code implementations • 12 Nov 2023 • Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shangguan, Jay Mahadeokar, Ozlem Kalinli, Christian Fuegen, Mike Seltzer
In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of LLM capabilities, without using any carefully curated paired data.
no code implementations • 22 Sep 2023 • Jiamin Xie, Ke Li, Jinxi Guo, Andros Tjandra, Yuan Shangguan, Leda Sari, Chunyang Wu, Junteng Jia, Jay Mahadeokar, Ozlem Kalinli
In this work, we propose the use of an adaptive masking approach in two scenarios for pruning a multilingual ASR model efficiently, each resulting in sparse monolingual models or a sparse multilingual model (named as Dynamic ASR Pathways).
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 5 Sep 2023 • Yuan Shangguan, Haichuan Yang, Danni Li, Chunyang Wu, Yassir Fathullah, Dilin Wang, Ayushi Dalmia, Raghuraman Krishnamoorthi, Ozlem Kalinli, Junteng Jia, Jay Mahadeokar, Xin Lei, Mike Seltzer, Vikas Chandra
Results demonstrate that our TODM Supernet either matches or surpasses the performance of manually tuned models by up to a relative of 3% better in word error rate (WER), while efficiently keeping the cost of training many models at a small constant.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 21 Jul 2023 • Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan Xiong, Jay Mahadeokar, Ozlem Kalinli, Christian Fuegen, Mike Seltzer
Furthermore, we perform ablation studies to investigate whether the LLM can be completely frozen during training to maintain its original capabilities, scaling up the audio encoder, and increasing the audio encoder striding to generate fewer embeddings.
Abstractive Text Summarization
Automatic Speech Recognition
+3
no code implementations • 30 May 2023 • Shuo Liu, Leda Sari, Chunyang Wu, Gil Keren, Yuan Shangguan, Jay Mahadeokar, Ozlem Kalinli
This paper presents a method for selecting appropriate synthetic speech samples from a given large text-to-speech (TTS) dataset as supplementary training data for an automatic speech recognition (ASR) model.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 21 May 2023 • Yassir Fathullah, Chunyang Wu, Yuan Shangguan, Junteng Jia, Wenhan Xiong, Jay Mahadeokar, Chunxi Liu, Yangyang Shi, Ozlem Kalinli, Mike Seltzer, Mark J. F. Gales
State space models (SSMs) have recently shown promising results on small-scale sequence and language modelling tasks, rivalling and outperforming many attention-based approaches.
no code implementations • 15 Dec 2022 • Ke Li, Jay Mahadeokar, Jinxi Guo, Yangyang Shi, Gil Keren, Ozlem Kalinli, Michael L. Seltzer, Duc Le
Experiments on Librispeech and in-house data show relative WER reductions (WERRs) from 3% to 5% with a slight increase in model size and negligible extra token emission latency compared with fast-slow encoder based transducer.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 20 Oct 2022 • Desh Raj, Junteng Jia, Jay Mahadeokar, Chunyang Wu, Niko Moritz, Xiaohui Zhang, Ozlem Kalinli
In this paper, we investigate anchored speech recognition to make neural transducers robust to background speech.
no code implementations • 19 Apr 2022 • Niko Moritz, Frank Seide, Duc Le, Jay Mahadeokar, Christian Fuegen
The two most popular loss functions for streaming end-to-end automatic speech recognition (ASR) are RNN-Transducer (RNN-T) and connectionist temporal classification (CTC).
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 30 Mar 2022 • Junteng Jia, Jay Mahadeokar, Weiyi Zheng, Yuan Shangguan, Ozlem Kalinli, Frank Seide
Cross-device federated learning (FL) protects user privacy by collaboratively training a model on user devices, therefore eliminating the need for collecting, storing, and manually labeling user data.
no code implementations • 29 Mar 2022 • Jay Mahadeokar, Yangyang Shi, Ke Li, Duc Le, Jiedan Zhu, Vikas Chandra, Ozlem Kalinli, Michael L Seltzer
Streaming ASR with strict latency constraints is required in many speech recognition applications.
2 code implementations • 28 Oct 2021 • Yao-Yuan Yang, Moto Hira, Zhaoheng Ni, Anjali Chourdia, Artyom Astafurov, Caroline Chen, Ching-Feng Yeh, Christian Puhrsch, David Pollack, Dmitriy Genzel, Donny Greenberg, Edward Z. Yang, Jason Lian, Jay Mahadeokar, Jeff Hwang, Ji Chen, Peter Goldsborough, Prabhat Roy, Sean Narenthiran, Shinji Watanabe, Soumith Chintala, Vincent Quenneville-Bélair, Yangyang Shi
This document describes version 0. 10 of TorchAudio: building blocks for machine learning applications in the audio and speech processing domain.
no code implementations • 7 Oct 2021 • Yangyang Shi, Chunyang Wu, Dilin Wang, Alex Xiao, Jay Mahadeokar, Xiaohui Zhang, Chunxi Liu, Ke Li, Yuan Shangguan, Varun Nagaraja, Ozlem Kalinli, Mike Seltzer
This paper improves the streaming transformer transducer for speech recognition by using non-causal convolution.
no code implementations • 6 Apr 2021 • Yuan Shangguan, Rohit Prabhavalkar, Hang Su, Jay Mahadeokar, Yangyang Shi, Jiatong Zhou, Chunyang Wu, Duc Le, Ozlem Kalinli, Christian Fuegen, Michael L. Seltzer
As speech-enabled devices such as smartphones and smart speakers become increasingly ubiquitous, there is growing interest in building automatic speech recognition (ASR) systems that can run directly on-device; end-to-end (E2E) speech recognition models such as recurrent neural network transducers and their variants have recently emerged as prime candidates for this task.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 6 Apr 2021 • Jay Mahadeokar, Yangyang Shi, Yuan Shangguan, Chunyang Wu, Alex Xiao, Hang Su, Duc Le, Ozlem Kalinli, Christian Fuegen, Michael L. Seltzer
In order to achieve flexible and better accuracy and latency trade-offs, the following techniques are used.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 5 Apr 2021 • Yangyang Shi, Varun Nagaraja, Chunyang Wu, Jay Mahadeokar, Duc Le, Rohit Prabhavalkar, Alex Xiao, Ching-Feng Yeh, Julian Chan, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
DET gets similar accuracy as a baseline model with better latency on a large in-house data set by assigning a lightweight encoder for the beginning part of one utterance and a full-size encoder for the rest.
no code implementations • 5 Apr 2021 • Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim, Yangyang Shi, Jay Mahadeokar, Julian Chan, Yuan Shangguan, Christian Fuegen, Ozlem Kalinli, Yatharth Saraf, Michael L. Seltzer
How to leverage dynamic contextual information in end-to-end speech recognition has remained an active research area.
no code implementations • 23 Feb 2021 • Ganesh Venkatesh, Alagappan Valliappan, Jay Mahadeokar, Yuan Shangguan, Christian Fuegen, Michael L. Seltzer, Vikas Chandra
Recurrent transducer models have emerged as a promising solution for speech recognition on the current and next generation smart devices.
no code implementations • 16 Nov 2020 • Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Christian Fuegen, Michael L. Seltzer
End-to-end models in general, and Recurrent Neural Network Transducer (RNN-T) in particular, have gained significant traction in the automatic speech recognition community in the last few years due to their simplicity, compactness, and excellent performance on generic transcription tasks.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 5 Nov 2020 • Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, Michael L. Seltzer
There is a growing interest in the speech community in developing Recurrent Neural Network Transducer (RNN-T) models for automatic speech recognition (ASR) applications.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 26 Oct 2020 • Suyoun Kim, Yuan Shangguan, Jay Mahadeokar, Antoine Bruguier, Christian Fuegen, Michael L. Seltzer, Duc Le
Recurrent Neural Network Transducer (RNN-T), like most end-to-end speech recognition model architectures, has an implicit neural network language model (NNLM) and cannot easily leverage unpaired text data during training.
no code implementations • 4 Jun 2020 • Mahaveer Jain, Gil Keren, Jay Mahadeokar, Geoffrey Zweig, Florian Metze, Yatharth Saraf
By using an attention model and a biasing model to leverage the contextual metadata that accompanies a video, we observe a relative improvement of about 16% in Word Error Rate on Named Entities (WER-NE) for videos with related metadata.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 5 Nov 2019 • Mahaveer Jain, Kjell Schubert, Jay Mahadeokar, Ching-Feng Yeh, Kaustubh Kalgaonkar, Anuroop Sriram, Christian Fuegen, Michael L. Seltzer
Neural transducer-based systems such as RNN Transducers (RNN-T) for automatic speech recognition (ASR) blend the individual components of a traditional hybrid ASR systems (acoustic model, language model, punctuation model, inverse text normalization) into one single model.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
1 code implementation • 28 Oct 2019 • Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schubert, Christian Fuegen, Michael L. Seltzer
We explore options to use Transformer networks in neural transducer for end-to-end speech recognition.
no code implementations • 22 Oct 2019 • Yongqiang Wang, Abdel-rahman Mohamed, Duc Le, Chunxi Liu, Alex Xiao, Jay Mahadeokar, Hongzhao Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang, Christian Fuegen, Geoffrey Zweig, Michael L. Seltzer
We propose and evaluate transformer-based acoustic models (AMs) for hybrid speech recognition.
Ranked #21 on
Speech Recognition
on LibriSpeech test-other