no code implementations • ICML 2020 • Remi Munos, Julien Perolat, Jean-Baptiste Lespiau, Mark Rowland, Bart De Vylder, Marc Lanctot, Finbarr Timbers, Daniel Hennes, Shayegan Omidshafiei, Audrunas Gruslys, Mohammad Gheshlaghi Azar, Edward Lockhart, Karl Tuyls
We introduce and analyze a class of algorithms, called Mirror Ascent against an Improved Opponent (MAIO), for computing Nash equilibria in two-player zero-sum games, both in normal form and in sequential imperfect information form.
no code implementations • 12 Apr 2023 • Nan Rosemary Ke, Sara-Jane Dunn, Jorg Bornschein, Silvia Chiappa, Melanie Rey, Jean-Baptiste Lespiau, Albin Cassirer, Jane Wang, Theophane Weber, David Barrett, Matthew Botvinick, Anirudh Goyal, Mike Mozer, Danilo Rezende
To accurately identify GRNs, perturbational data is required.
1 code implementation • 2 Feb 2023 • Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent SIfre, John Jumper
We present speculative sampling, an algorithm for accelerating transformer decoding by enabling the generation of multiple tokens from each transformer call.
1 code implementation • 30 Jun 2022 • Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen Mcaleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan Omidshafiei, Edward Lockhart, Laurent SIfre, Nathalie Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis Hassabis, Karl Tuyls
It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes).
1 code implementation • NA 2021 • Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent SIfre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving
Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world.
Ranked #1 on
College Mathematics
on BIG-bench
(using extra training data)
2 code implementations • 8 Dec 2021 • Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, Laurent SIfre
We enhance auto-regressive language models by conditioning on document chunks retrieved from a large corpus, based on local similarity with preceding tokens.
Ranked #1 on
Language Modelling
on WikiText-103
(using extra training data)
no code implementations • EMNLP 2021 • Rémi Leblond, Jean-Baptiste Alayrac, Laurent SIfre, Miruna Pislar, Jean-Baptiste Lespiau, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals
Beam search is the go-to method for decoding auto-regressive machine translation models.
no code implementations • 27 Aug 2020 • Audrūnas Gruslys, Marc Lanctot, Rémi Munos, Finbarr Timbers, Martin Schmid, Julien Perolat, Dustin Morrill, Vinicius Zambaldi, Jean-Baptiste Lespiau, John Schultz, Mohammad Gheshlaghi Azar, Michael Bowling, Karl Tuyls
In this paper, we describe a general model-free RL method for no-regret learning based on repeated reconsideration of past behavior.
no code implementations • 19 Feb 2020 • Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder, Georgios Piliouras, Marc Lanctot, Karl Tuyls
In this paper we investigate the Follow the Regularized Leader dynamics in sequential imperfect information games (IIG).
15 code implementations • 26 Aug 2019 • Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, Jonah Ryan-Davis
OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
1 code implementation • 1 Jun 2019 • Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Remi Munos, Julien Perolat, Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar Duenez-Guzman, Karl Tuyls
Policy gradient and actor-critic algorithms form the basis of many commonly used training techniques in deep reinforcement learning.
no code implementations • 13 Mar 2019 • Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-Baptiste Lespiau, Dustin Morrill, Finbarr Timbers, Karl Tuyls
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents.
1 code implementation • 4 Mar 2019 • Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland, Jean-Baptiste Lespiau, Wojciech M. Czarnecki, Marc Lanctot, Julien Perolat, Remi Munos
We introduce {\alpha}-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called Markov-Conley chains (MCCs).
no code implementations • ICLR 2019 • Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere, Arthur Guez, Jean-Baptiste Lespiau, Nicolas Heess
In contrast to off-policy algorithms based on Importance Sampling which re-weight data, CF-GPS leverages a model to explicitly consider alternative outcomes, allowing the algorithm to make better use of experience data.