no code implementations • 19 Jul 2022 • Gabriele Benelli, Thomas Y. Chen, Javier Duarte, Matthew Feickert, Matthew Graham, Lindsey Gray, Dan Hackett, Phil Harris, Shih-Chieh Hsu, Gregor Kasieczka, Elham E. Khoda, Matthias Komm, Mia Liu, Mark S. Neubauer, Scarlet Norberg, Alexx Perloff, Marcel Rieger, Claire Savard, Kazuhiro Terao, Savannah Thais, Avik Roy, Jean-Roch Vlimant, Grigorios Chachamis
The growing role of data science (DS) and machine learning (ML) in high-energy physics (HEP) is well established and pertinent given the complex detectors, large data, sets and sophisticated analyses at the heart of HEP research.
no code implementations • 1 Mar 2022 • Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone
The standard particle flow algorithm reconstructs stable particles based on calorimeter clusters and tracks to provide a global event reconstruction that exploits the combined information of multiple detector subsystems, leading to strong improvements for quantities such as jets and missing transverse energy.
no code implementations • 1 Mar 2022 • Mary Touranakou, Nadezda Chernyavskaya, Javier Duarte, Dimitrios Gunopulos, Raghav Kansal, Breno Orzari, Maurizio Pierini, Thiago Tomei, Jean-Roch Vlimant
We study how to use Deep Variational Autoencoders for a fast simulation of jets of particles at the LHC.
2 code implementations • 24 Nov 2021 • Farouk Mokhtar, Raghav Kansal, Daniel Diaz, Javier Duarte, Joosep Pata, Maurizio Pierini, Jean-Roch Vlimant
The particle-flow (PF) algorithm is used in general-purpose particle detectors to reconstruct a comprehensive particle-level view of the collision by combining information from different subdetectors.
1 code implementation • 24 Nov 2021 • Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier Duarte, Sukanya Krishna, Farouk Mokhtar, Jean-Roch Vlimant, Maurizio Pierini
We explore the use of graph-based autoencoders, which operate on jets in their "particle cloud" representations and can leverage the interdependencies among the particles within a jet, for such tasks.
no code implementations • 25 Oct 2021 • Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.
1 code implementation • 26 Sep 2021 • Cenk Tüysüz, Carla Rieger, Kristiane Novotny, Bilge Demirköz, Daniel Dobos, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant, Richard Forster
This increase in luminosity will significantly increase the number of particles interacting with the detector.
no code implementations • 27 Jul 2021 • Eric A. Moreno, Jean-Roch Vlimant, Maria Spiropulu, Bartlomiej Borzyszkowski, Maurizio Pierini
The recurrent autoencoder outperforms other autoencoders based on different architectures.
2 code implementations • NeurIPS 2021 • Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos
We propose JetNet as a novel point-cloud-style dataset for the ML community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models.
1 code implementation • 3 May 2021 • Sabrina Amrouche, Laurent Basara, Paolo Calafiura, Dmitry Emeliyanov, Victor Estrade, Steven Farrell, Cécile Germain, Vladimir Vava Gligorov, Tobias Golling, Sergey Gorbunov, Heather Gray, Isabelle Guyon, Mikhail Hushchyn, Vincenzo Innocente, Moritz Kiehn, Marcel Kunze, Edward Moyse, David Rousseau, Andreas Salzburger, Andrey Ustyuzhanin, Jean-Roch Vlimant
Both were measured on the Codalab platform where the participants had to upload their software.
2 code implementations • 11 Mar 2021 • Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steve Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, and Alina Lazar
The Exa. TrkX project has applied geometric learning concepts such as metric learning and graph neural networks to HEP particle tracking.
no code implementations • 10 Mar 2021 • Jeremy Hewes, Adam Aurisano, Giuseppe Cerati, Jim Kowalkowski, Claire Lee, Wei-keng Liao, Alexandra Day, Angrit Agrawal, Maria Spiropulu, Jean-Roch Vlimant, Lindsey Gray, Thomas Klijnsma, Paolo Calafiura, Sean Conlon, Steve Farrell, Xiangyang Ju, Daniel Murnane
This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC).
Object Reconstruction
High Energy Physics - Experiment
1 code implementation • 21 Jan 2021 • Joosep Pata, Javier Duarte, Jean-Roch Vlimant, Maurizio Pierini, Maria Spiropulu
In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a comprehensive particle-level view of the event by combining information from the calorimeters and the trackers, significantly improving the detector resolution for jets and the missing transverse momentum.
no code implementations • 3 Dec 2020 • Jean-Roch Vlimant, Junqi Yin
Deep learning models are yielding increasingly better performances thanks to multiple factors.
no code implementations • 2 Dec 2020 • Javier Duarte, Jean-Roch Vlimant
In this chapter, we recapitulate the mathematical formalism of GNNs and highlight aspects to consider when designing these networks for HEP data, including graph construction, model architectures, learning objectives, and graph pooling.
graph construction
High Energy Physics - Phenomenology
High Energy Physics - Experiment
Data Analysis, Statistics and Probability
no code implementations • 2 Dec 2020 • Cenk Tüysüz, Kristiane Novotny, Carla Rieger, Federico Carminati, Bilge Demirköz, Daniel Dobos, Fabio Fracas, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant
The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC.
Quantum Physics
2 code implementations • 30 Nov 2020 • Raghav Kansal, Javier Duarte, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary Touranakou, Jean-Roch Vlimant, Dimitrios Gunopulos
We develop a graph generative adversarial network to generate sparse data sets like those produced at the CERN Large Hadron Collider (LHC).
no code implementations • 5 Oct 2020 • Cheng Chen, Olmo Cerri, Thong Q. Nguyen, Jean-Roch Vlimant, Maurizio Pierini
We present a fast simulation application based on a Deep Neural Network, designed to create large analysis-specific datasets.
no code implementations • 27 Jul 2020 • Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant
Particle physics is a branch of science aiming at discovering the fundamental laws of matter and forces.
High Energy Physics - Experiment High Energy Physics - Phenomenology
1 code implementation • 14 Jul 2020 • Cenk Tüysüz, Federico Carminati, Bilge Demirköz, Daniel Dobos, Fabio Fracas, Kristiane Novotny, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant
Unprecedented increase of complexity and scale of data is expected in computation necessary for the tracking detectors of the High Luminosity Large Hadron Collider (HL-LHC) experiments.
Quantum Physics
no code implementations • 30 Jun 2020 • Nicholas Choma, Daniel Murnane, Xiangyang Ju, Paolo Calafiura, Sean Conlon, Steven Farrell, Prabhat, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Panagiotis Spentzouris, Jean-Roch Vlimant, Maria Spiropulu, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher
Detector information can be associated with nodes and edges, enabling a GNN to propagate the embedded parameters around the graph and predict node-, edge- and graph-level observables.
1 code implementation • 4 May 2020 • Oliver Knapp, Guenther Dissertori, Olmo Cerri, Thong Q. Nguyen, Jean-Roch Vlimant, Maurizio Pierini
We apply an Adversarially Learned Anomaly Detection (ALAD) algorithm to the problem of detecting new physics processes in proton-proton collisions at the Large Hadron Collider.
no code implementations • 25 Mar 2020 • Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Prabhat, Lindsey Gray, Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran, Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spiropulu, Sitong An, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision.
Instrumentation and Detectors High Energy Physics - Experiment Computational Physics Data Analysis, Statistics and Probability
1 code implementation • 18 Mar 2020 • Cenk Tüysüz, Federico Carminati, Bilge Demirköz, Daniel Dobos, Fabio Fracas, Kristiane Novotny, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant
In addition, the ambiguity in assigning hits to particle tracks will be increased due to the finite resolution of the detector and the physical closeness of the hits.
Quantum Physics High Energy Physics - Experiment Data Analysis, Statistics and Probability
no code implementations • 14 Dec 2019 • Dawit Belayneh, Federico Carminati, Amir Farbin, Benjamin Hooberman, Gulrukh Khattak, Miaoyuan Liu, Junze Liu, Dominick Olivito, Vitória Barin Pacela, Maurizio Pierini, Alexander Schwing, Maria Spiropulu, Sofia Vallecorsa, Jean-Roch Vlimant, Wei Wei, Matt Zhang
These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.
3 code implementations • 26 Sep 2019 • Eric A. Moreno, Thong Q. Nguyen, Jean-Roch Vlimant, Olmo Cerri, Harvey B. Newman, Avikar Periwal, Maria Spiropulu, Javier M. Duarte, Maurizio Pierini
We develop a jet identification algorithm based on an interaction network, designed to identify high-momentum Higgs bosons decaying to bottom quark-antiquark pairs, distinguish them from ordinary jets originating from the hadronization of quarks and gluons.
High Energy Physics - Experiment High Energy Physics - Phenomenology
2 code implementations • 14 Aug 2019 • Eric A. Moreno, Olmo Cerri, Javier M. Duarte, Harvey B. Newman, Thong Q. Nguyen, Avikar Periwal, Maurizio Pierini, Aidana Serikova, Maria Spiropulu, Jean-Roch Vlimant
We investigate the performance of a jet identification algorithm based on interaction networks (JEDI-net) to identify all-hadronic decays of high-momentum heavy particles produced at the LHC and distinguish them from ordinary jets originating from the hadronization of quarks and gluons.
High Energy Physics - Experiment High Energy Physics - Phenomenology
no code implementations • 13 Aug 2019 • Alexander Zlokapa, Abhishek Anand, Jean-Roch Vlimant, Javier M. Duarte, Joshua Job, Daniel Lidar, Maria Spiropulu
At the High Luminosity Large Hadron Collider (HL-LHC), traditional track reconstruction techniques that are critical for analysis are expected to face challenges due to scaling with track density.
1 code implementation • 13 Aug 2019 • Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, Maria Spiropulu
The significant improvement of quantum annealing algorithms for machine learning and the use of a discrete quantum algorithm on a continuous optimization problem both opens a new class of problems that can be solved by quantum annealers and suggests the approach in performance of near-term quantum machine learning towards classical benchmarks.
1 code implementation • 26 Nov 2018 • Olmo Cerri, Thong Q. Nguyen, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
Using variational autoencoders trained on known physics processes, we develop a one-sided threshold test to isolate previously unseen processes as outlier events.
no code implementations • 18 Oct 2018 • Jesus Arjona Martinez, Olmo Cerri, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
At the Large Hadron Collider, the high transverse-momentum events studied by experimental collaborations occur in coincidence with parasitic low transverse-momentum collisions, usually referred to as pileup.
3 code implementations • 14 Oct 2018 • Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Prabhat, Dustin Anderson, Jean-Roch Vlimant, Stephan Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski, Panagiotis Spentzouris, Aristeidis Tsaris
The second set of models use Graph Neural Networks (GNNs) for the tasks of hit classification and segment classification.
High Energy Physics - Experiment Data Analysis, Statistics and Probability
no code implementations • 8 Jul 2018 • Kim Albertsson, Piero Altoe, Dustin Anderson, John Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Bjorn Burkle, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Yi-fan Chen, Taylor Childers, Yann Coadou, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Andrea De Simone, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ulrich Heintz, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Sydney Otten, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Wei Sun, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Justin Vasel, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Kun Yang, Omar Zapata
In this document we discuss promising future research and development areas for machine learning in particle physics.
3 code implementations • 29 Jun 2018 • Thong Q. Nguyen, Daniel Weitekamp III, Dustin Anderson, Roberto Castello, Olmo Cerri, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
We show how event topology classification based on deep learning could be used to improve the purity of data samples selected in real time at at the Large Hadron Collider.
1 code implementation • 18 Dec 2017 • Johannes Albrecht, Antonio Augusto Alves Jr, Guilherme Amadio, Giuseppe Andronico, Nguyen Anh-Ky, Laurent Aphecetche, John Apostolakis, Makoto Asai, Luca Atzori, Marian Babik, Giuseppe Bagliesi, Marilena Bandieramonte, Sunanda Banerjee, Martin Barisits, Lothar A. T. Bauerdick, Stefano Belforte, Douglas Benjamin, Catrin Bernius, Wahid Bhimji, Riccardo Maria Bianchi, Ian Bird, Catherine Biscarat, Jakob Blomer, Kenneth Bloom, Tommaso Boccali, Brian Bockelman, Tomasz Bold, Daniele Bonacorsi, Antonio Boveia, Concezio Bozzi, Marko Bracko, David Britton, Andy Buckley, Predrag Buncic, Paolo Calafiura, Simone Campana, Philippe Canal, Luca Canali, Gianpaolo Carlino, Nuno Castro, Marco Cattaneo, Gianluca Cerminara, Javier Cervantes Villanueva, Philip Chang, John Chapman, Gang Chen, Taylor Childers, Peter Clarke, Marco Clemencic, Eric Cogneras, Jeremy Coles, Ian Collier, David Colling, Gloria Corti, Gabriele Cosmo, Davide Costanzo, Ben Couturier, Kyle Cranmer, Jack Cranshaw, Leonardo Cristella, David Crooks, Sabine Crépé-Renaudin, Robert Currie, Sünje Dallmeier-Tiessen, Kaushik De, Michel De Cian, Albert De Roeck, Antonio Delgado Peris, Frédéric Derue, Alessandro Di Girolamo, Salvatore Di Guida, Gancho Dimitrov, Caterina Doglioni, Andrea Dotti, Dirk Duellmann, Laurent Duflot, Dave Dykstra, Katarzyna Dziedziniewicz-Wojcik, Agnieszka Dziurda, Ulrik Egede, Peter Elmer, Johannes Elmsheuser, V. Daniel Elvira, Giulio Eulisse, Steven Farrell, Torben Ferber, Andrej Filipcic, Ian Fisk, Conor Fitzpatrick, José Flix, Andrea Formica, Alessandra Forti, Giovanni Franzoni, James Frost, Stu Fuess, Frank Gaede, Gerardo Ganis, Robert Gardner, Vincent Garonne, Andreas Gellrich, Krzysztof Genser, Simon George, Frank Geurts, Andrei Gheata, Mihaela Gheata, Francesco Giacomini, Stefano Giagu, Manuel Giffels, Douglas Gingrich, Maria Girone, Vladimir V. Gligorov, Ivan Glushkov, Wesley Gohn, Jose Benito Gonzalez Lopez, Isidro González Caballero, Juan R. González Fernández, Giacomo Govi, Claudio Grandi, Hadrien Grasland, Heather Gray, Lucia Grillo, Wen Guan, Oliver Gutsche, Vardan Gyurjyan, Andrew Hanushevsky, Farah Hariri, Thomas Hartmann, John Harvey, Thomas Hauth, Benedikt Hegner, Beate Heinemann, Lukas Heinrich, Andreas Heiss, José M. Hernández, Michael Hildreth, Mark Hodgkinson, Stefan Hoeche, Burt Holzman, Peter Hristov, Xingtao Huang, Vladimir N. Ivanchenko, Todor Ivanov, Jan Iven, Brij Jashal, Bodhitha Jayatilaka, Roger Jones, Michel Jouvin, Soon Yung Jun, Michael Kagan, Charles William Kalderon, Meghan Kane, Edward Karavakis, Daniel S. Katz, Dorian Kcira, Oliver Keeble, Borut Paul Kersevan, Michael Kirby, Alexei Klimentov, Markus Klute, Ilya Komarov, Dmitri Konstantinov, Patrick Koppenburg, Jim Kowalkowski, Luke Kreczko, Thomas Kuhr, Robert Kutschke, Valentin Kuznetsov, Walter Lampl, Eric Lancon, David Lange, Mario Lassnig, Paul Laycock, Charles Leggett, James Letts, Birgit Lewendel, Teng Li, Guilherme Lima, Jacob Linacre, Tomas Linden, Miron Livny, Giuseppe Lo Presti, Sebastian Lopienski, Peter Love, Adam Lyon, Nicolò Magini, Zachary L. Marshall, Edoardo Martelli, Stewart Martin-Haugh, Pere Mato, Kajari Mazumdar, Thomas McCauley, Josh McFayden, Shawn McKee, Andrew McNab, Rashid Mehdiyev, Helge Meinhard, Dario Menasce, Patricia Mendez Lorenzo, Alaettin Serhan Mete, Michele Michelotto, Jovan Mitrevski, Lorenzo Moneta, Ben Morgan, Richard Mount, Edward Moyse, Sean Murray, Armin Nairz, Mark S. Neubauer, Andrew Norman, Sérgio Novaes, Mihaly Novak, Arantza Oyanguren, Nurcan Ozturk, Andres Pacheco Pages, Michela Paganini, Jerome Pansanel, Vincent R. Pascuzzi, Glenn Patrick, Alex Pearce, Ben Pearson, Kevin Pedro, Gabriel Perdue, Antonio Perez-Calero Yzquierdo, Luca Perrozzi, Troels Petersen, Marko Petric, Andreas Petzold, Jónatan Piedra, Leo Piilonen, Danilo Piparo, Jim Pivarski, Witold Pokorski, Francesco Polci, Karolos Potamianos, Fernanda Psihas, Albert Puig Navarro, Günter Quast, Gerhard Raven, Jürgen Reuter, Alberto Ribon, Lorenzo Rinaldi, Martin Ritter, James Robinson, Eduardo Rodrigues, Stefan Roiser, David Rousseau, Gareth Roy, Grigori Rybkine, Andre Sailer, Tai Sakuma, Renato Santana, Andrea Sartirana, Heidi Schellman, Jaroslava Schovancová, Steven Schramm, Markus Schulz, Andrea Sciabà, Sally Seidel, Sezen Sekmen, Cedric Serfon, Horst Severini, Elizabeth Sexton-Kennedy, Michael Seymour, Davide Sgalaberna, Illya Shapoval, Jamie Shiers, Jing-Ge Shiu, Hannah Short, Gian Piero Siroli, Sam Skipsey, Tim Smith, Scott Snyder, Michael D. Sokoloff, Panagiotis Spentzouris, Hartmut Stadie, Giordon Stark, Gordon Stewart, Graeme A. Stewart, Arturo Sánchez, Alberto Sánchez-Hernández, Anyes Taffard, Umberto Tamponi, Jeff Templon, Giacomo Tenaglia, Vakhtang Tsulaia, Christopher Tunnell, Eric Vaandering, Andrea Valassi, Sofia Vallecorsa, Liviu Valsan, Peter Van Gemmeren, Renaud Vernet, Brett Viren, Jean-Roch Vlimant, Christian Voss, Margaret Votava, Carl Vuosalo, Carlos Vázquez Sierra, Romain Wartel, Gordon T. Watts, Torre Wenaus, Sandro Wenzel, Mike Williams, Frank Winklmeier, Christoph Wissing, Frank Wuerthwein, Benjamin Wynne, Zhang Xiaomei, Wei Yang, Efe Yazgan
Particle physics has an ambitious and broad experimental programme for the coming decades.
Computational Physics High Energy Physics - Experiment
1 code implementation • 16 Dec 2017 • Dustin Anderson, Jean-Roch Vlimant, Maria Spiropulu
We present a lightweight Python framework for distributed training of neural networks on multiple GPUs or CPUs.