1 code implementation • 29 May 2024 • Jeffery Dick, Saptarshi Nath, Christos Peridis, Eseoghene Benjamin, Soheil Kolouri, Andrea Soltoggio
The results suggest that optimal transport statistical methods provide an explainable and justifiable procedure for online context detection and reward optimization in lifelong reinforcement learning.
1 code implementation • 21 Jan 2023 • Andrea Soltoggio, Eseoghene Ben-Iwhiwhu, Christos Peridis, Pawel Ladosz, Jeffery Dick, Praveen K. Pilly, Soheil Kolouri
This paper introduces a set of formally defined and transparent problems for reinforcement learning algorithms with the following characteristics: (1) variable degrees of observability (non-Markov observations), (2) distal and sparse rewards, (3) variable and hierarchical reward structure, (4) multiple-task generation, (5) variable problem complexity.
2 code implementations • 30 Oct 2021 • Eseoghene Ben-Iwhiwhu, Jeffery Dick, Nicholas A. Ketz, Praveen K. Pilly, Andrea Soltoggio
Meta-reinforcement learning (meta-RL) algorithms enable agents to adapt quickly to tasks from few samples in dynamic environments.
no code implementations • 29 Sep 2021 • Jayanta Dey, Ali Geisa, Ronak Mehta, Tyler M. Tomita, Hayden S. Helm, Haoyin Xu, Eric Eaton, Jeffery Dick, Carey E. Priebe, Joshua T. Vogelstein
Establishing proper and universally agreed-upon definitions for these learning setups is essential for thoroughly exploring the evolution of ideas across different learning scenarios and deriving generalized mathematical bounds for these learners.
1 code implementation • 27 Apr 2020 • Eseoghene Ben-Iwhiwhu, Pawel Ladosz, Jeffery Dick, Wen-Hua Chen, Praveen Pilly, Andrea Soltoggio
Rapid online adaptation to changing tasks is an important problem in machine learning and, recently, a focus of meta-reinforcement learning.
1 code implementation • 21 Sep 2019 • Pawel Ladosz, Eseoghene Ben-Iwhiwhu, Jeffery Dick, Yang Hu, Nicholas Ketz, Soheil Kolouri, Jeffrey L. Krichmar, Praveen Pilly, Andrea Soltoggio
This paper presents a new neural architecture that combines a modulated Hebbian network (MOHN) with DQN, which we call modulated Hebbian plus Q network architecture (MOHQA).