1 code implementation • NeurIPS 2020 • Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider, Relja Arandjelović, Jason Ramapuram, Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, Andrew Zisserman
In particular, we explore how best to combine the modalities, such that fine-grained representations of the visual and audio modalities can be maintained, whilst also integrating text into a common embedding.
4 code implementations • ICML 2020 • Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami, Aaron van den Oord
Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with artificial ones remains an open challenge.
Ranked #6 on Contrastive Learning on imagenet-1k
no code implementations • 6 Mar 2019 • Jeffrey De Fauw, Sander Dieleman, Karen Simonyan
We show that autoregressive models conditioned on these representations can produce high-fidelity reconstructions of images, and that we can train autoregressive priors on these representations that produce samples with large-scale coherence.
2 code implementations • 12 Sep 2018 • Stanislav Nikolov, Sam Blackwell, Alexei Zverovitch, Ruheena Mendes, Michelle Livne, Jeffrey De Fauw, Yojan Patel, Clemens Meyer, Harry Askham, Bernardino Romera-Paredes, Christopher Kelly, Alan Karthikesalingam, Carlton Chu, Dawn Carnell, Cheng Boon, Derek D'Souza, Syed Ali Moinuddin, Bethany Garie, Yasmin McQuinlan, Sarah Ireland, Kiarna Hampton, Krystle Fuller, Hugh Montgomery, Geraint Rees, Mustafa Suleyman, Trevor Back, Cían Hughes, Joseph R. Ledsam, Olaf Ronneberger
We demonstrate the model's clinical applicability by assessing its performance on a test set of 21 CT scans from clinical practice, each with the 21 OARs segmented by two independent experts.
9 code implementations • NeurIPS 2018 • Simon A. A. Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger
To this end we propose a generative segmentation model based on a combination of a U-Net with a conditional variational autoencoder that is capable of efficiently producing an unlimited number of plausible hypotheses.
no code implementations • 8 Feb 2016 • Sander Dieleman, Jeffrey De Fauw, Koray Kavukcuoglu
We evaluate the effect of these architectural modifications on three datasets which exhibit rotational symmetry and demonstrate improved performance with smaller models.