no code implementations • 5 Mar 2025 • Patryk Rygiel, Julian Suk, Kak Khee Yeung, Christoph Brune, Jelmer M. Wolterink
In this work, we introduce an active learning framework to reduce the number of CFD simulations required for the training of surrogate models, lowering the barriers to their deployment in new applications.
no code implementations • 15 Jan 2025 • Guido Nannini, Julian Suk, Patryk Rygiel, Simone Saitta, Luca Mariani, Riccardo Maragna, Andrea Baggiano, Gianluca Pontone, Jelmer M. Wolterink, Alberto Redaelli
This study empirically analyzes various backends for predicting vFFR fields in coronary arteries as CFD surrogates, comparing six backends for learning hemodynamics on meshes using CFD solutions as ground truth.
no code implementations • 15 Oct 2024 • Julian Suk, Guido Nannini, Patryk Rygiel, Christoph Brune, Gianluca Pontone, Alberto Redaelli, Jelmer M. Wolterink
This shows that deep vectorised operators are a powerful modelling tool for cardiovascular hemodynamics estimation in coronary arteries and beyond.
no code implementations • 18 Sep 2024 • Rudolf L. M. van Herten, Ioannis Lagogiannis, Jelmer M. Wolterink, Steffen Bruns, Eva R. Meulendijks, Damini Dey, Joris R. de Groot, José P. Henriques, R. Nils Planken, Simone Saitta, Ivana Išgum
Deep learning-based medical image segmentation and surface mesh generation typically involve a sequential pipeline from image to segmentation to meshes, often requiring large training datasets while making limited use of prior geometric knowledge.
no code implementations • 13 Aug 2024 • Julian Suk, Dieuwertje Alblas, Barbara A. Hutten, Albert Wiegman, Christoph Brune, Pim van Ooij, Jelmer M. Wolterink
This shows that physics-informed graph neural networks can be trained using 4D flow MRI data to estimate blood flow in unseen carotid artery geometries.
no code implementations • 30 Jul 2024 • Simone Garzia, Patryk Rygiel, Sven Dummer, Filippo Cademartiri, Simona Celi, Jelmer M. Wolterink
For a 3D + time imaging dataset, we optimize an implicit neural representation (INR) that represents a time-dependent velocity vector field (VVF).
1 code implementation • 3 Apr 2024 • Yunjie Chen, Jelmer M. Wolterink, Olaf M. Neve, Stephan R. Romeijn, Berit M. Verbist, Erik F. Hensen, Qian Tao, Marius Staring
In the proposed method, each tumor is represented as a signed distance function (SDF) conditioned on a low-dimensional latent code.
1 code implementation • 28 Mar 2024 • Baris Imre, Elina Thibeau-Sutre, Jorieke Reimer, Kuan Kho, Jelmer M. Wolterink
The deformation fields derived from this process are utilized to extract biomarkers that quantify the shift in the brain due to cSDH.
no code implementations • 28 Mar 2024 • Beerend G. A. Gerats, Jelmer M. Wolterink, Seb P. Mol, Ivo A. M. J. Broeders
Where instrument and anatomy tracking have often been considered two separate problems, in this paper, we propose a method for joint tracking of all structures simultaneously.
1 code implementation • 22 Mar 2024 • Patryk Rygiel, Dieuwertje Alblas, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink
To this end, we propose a combination of a global controller leveraging voxel mask segmentations to provide boundary conditions for vessels of interest to a local, iterative vessel segmentation model.
1 code implementation • 12 Mar 2024 • Julian Suk, Baris Imre, Jelmer M. Wolterink
We propose LaB-GATr, a transfomer neural network with geometric tokenisation that can effectively learn with large-scale (bio-)medical surface and volume meshes through sequence compression and interpolation.
no code implementations • 8 Dec 2023 • Pablo Laso, Stefano Cerri, Annabel Sorby-Adams, Jennifer Guo, Farrah Mateen, Philipp Goebl, Jiaming Wu, Peirong Liu, Hongwei Li, Sean I. Young, Benjamin Billot, Oula Puonti, Gordon Sze, Sam Payabavash, Adam DeHavenon, Kevin N. Sheth, Matthew S. Rosen, John Kirsch, Nicola Strisciuglio, Jelmer M. Wolterink, Arman Eshaghi, Frederik Barkhof, W. Taylor Kimberly, Juan Eugenio Iglesias
Brain atrophy and white matter hyperintensity (WMH) are critical neuroimaging features for ascertaining brain injury in cerebrovascular disease and multiple sclerosis.
no code implementations • 9 Nov 2023 • Dieuwertje Alblas, Julian Suk, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink
Hence, SIRE can be trained with arbitrarily oriented vessels with varying radii to generalise to vessels with a wide range of calibres and tortuosity.
1 code implementation • 6 Sep 2023 • Yunjie Chen, Marius Staring, Olaf M. Neve, Stephan R. Romeijn, Erik F. Hensen, Berit M. Verbist, Jelmer M. Wolterink, Qian Tao
In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation.
1 code implementation • 18 Aug 2023 • Elina Thibeau-Sutre, Dieuwertje Alblas, Sophie Buurman, Christoph Brune, Jelmer M. Wolterink
The application of deep learning models to large-scale data sets requires means for automatic quality assurance.
1 code implementation • 29 May 2023 • Philippe Weitz, Masi Valkonen, Leslie Solorzano, Circe Carr, Kimmo Kartasalo, Constance Boissin, Sonja Koivukoski, Aino Kuusela, Dusan Rasic, Yanbo Feng, Sandra Sinius Pouplier, Abhinav Sharma, Kajsa Ledesma Eriksson, Stephanie Robertson, Christian Marzahl, Chandler D. Gatenbee, Alexander R. A. Anderson, Marek Wodzinski, Artur Jurgas, Niccolò Marini, Manfredo Atzori, Henning Müller, Daniel Budelmann, Nick Weiss, Stefan Heldmann, Johannes Lotz, Jelmer M. Wolterink, Bruno De Santi, Abhijeet Patil, Amit Sethi, Satoshi Kondo, Satoshi Kasai, Kousuke Hirasawa, Mahtab Farrokh, Neeraj Kumar, Russell Greiner, Leena Latonen, Anne-Vibeke Laenkholm, Johan Hartman, Pekka Ruusuvuori, Mattias Rantalainen
The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical applications.
1 code implementation • 18 Apr 2023 • David Wiesner, Julian Suk, Sven Dummer, Tereza Nečasová, Vladimír Ulman, David Svoboda, Jelmer M. Wolterink
Finally, we show how microscopy images of living cells that correspond to our generated cell shapes can be synthesized using an image-to-image model.
no code implementations • 2 Mar 2023 • Dieuwertje Alblas, Marieke Hofman, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink
We represent the AAA wall over time as the zero-level set of a signed distance function (SDF), estimated by a multilayer perception that operates on space and time.
1 code implementation • 17 Feb 2023 • Julian Suk, Christoph Brune, Jelmer M. Wolterink
We demonstrate how to construct an SE(3)-equivariant GNN that is independent of the spatial orientation of the input mesh and show how this reduces the necessary amount of training data compared to a baseline neural network.
no code implementations • 2 Feb 2023 • Yunjie Chen, Marius Staring, Jelmer M. Wolterink, Qian Tao
In this paper, we propose a novel MR image translation solution based on local implicit neural representations.
2 code implementations • 9 Dec 2022 • Julian Suk, Pim de Haan, Phillip Lippe, Christoph Brune, Jelmer M. Wolterink
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice.
no code implementations • 22 Nov 2022 • Beerend G. A. Gerats, Jelmer M. Wolterink, Ivo A. M. J. Broeders
Quantitatively, we evaluate view synthesis from an unseen camera position in terms of PSNR, SSIM and LPIPS for the colour channels and in MAE and error percentage for the estimated depth.
no code implementations • 21 Oct 2022 • Beerend G. A. Gerats, Jelmer M. Wolterink, Ivo A. M. J. Broeders
Then, the detected joint locations are projected to 3D and fused over all camera views.
no code implementations • 29 Jul 2022 • Dieuwertje Alblas, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink
This allows us to model complex vascular structures with a representation that is implicit, continuous, light-weight, and easy to integrate with deep learning algorithms.
1 code implementation • 13 Jul 2022 • David Wiesner, Julian Suk, Sven Dummer, David Svoboda, Jelmer M. Wolterink
Deep generative models for cell shape synthesis require a light-weight and flexible representation of the cell shape.
no code implementations • 9 Apr 2022 • Nathan Blanken, Jelmer M. Wolterink, Hervé Delingette, Christoph Brune, Michel Versluis, Guillaume Lajoinie
The resulting image shows an order-of-magnitude gain in axial resolution compared to a delay-and-sum reconstruction with unprocessed element data.
no code implementations • 2 Dec 2021 • Dieuwertje Alblas, Christoph Brune, Jelmer M. Wolterink
Carotid artery vessel wall thickness measurement is an essential step in the monitoring of patients with atherosclerosis.
1 code implementation • 10 Sep 2021 • Julian Suk, Pim de Haan, Phillip Lippe, Christoph Brune, Jelmer M. Wolterink
In this work, we propose to instead use mesh convolutional neural networks that directly operate on the same finite-element surface mesh as used in CFD.
no code implementations • 10 Aug 2020 • Steffen Bruns, Jelmer M. Wolterink, Richard A. P. Takx, Robbert W. van Hamersvelt, Dominika Suchá, Max A. Viergever, Tim Leiner, Ivana Išgum
Deep learning-based whole-heart segmentation in coronary CT angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction.
no code implementations • 10 Jul 2020 • Julia M. H. Noothout, Bob D. de Vos, Jelmer M. Wolterink, Elbrich M. Postma, Paul A. M. Smeets, Richard A. P. Takx, Tim Leiner, Max A. Viergever, Ivana Išgum
Global landmark locations are obtained by averaging the predicted displacement vectors, where the contribution of each displacement vector is weighted by the posterior classification probability of the patch that it is pointing from.
no code implementations • 12 Nov 2019 • Louis D. van Harten, Jelmer M. Wolterink, Joost J. C. Verhoeff, Ivana Išgum
We empirically assess how many clinical delineations would be sufficient to train a CNN for the segmentation of OARs and find that increasing the training set size beyond a limited number of images leads to sharply diminishing returns.
no code implementations • 12 Nov 2019 • Louis D. van Harten, Jelmer M. Wolterink, Joost J. C. Verhoeff, Ivana Išgum
We show that this uncertainty measure can be used for two kinds of online quality control.
no code implementations • 10 Nov 2019 • Majd Zreik, Tim Leiner, Nadieh Khalili, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Ivana Išgum
We combine our previous works for the analysis of the complete coronary artery tree and the LV myocardium: Coronary arteries are encoded by two disjoint convolutional autoencoders (CAEs) and the LV myocardium is characterized by a convolutional neural network (CNN) and a CAE.
no code implementations • 14 Aug 2019 • Jelmer M. Wolterink, Tim Leiner, Ivana Išgum
In this work, we propose to use graph convolutional networks (GCNs) to predict the spatial location of vertices in a tubular surface mesh that segments the coronary artery lumen.
no code implementations • 28 Jun 2019 • Mohamed S. Elmahdy, Jelmer M. Wolterink, Hessam Sokooti, Ivana Išgum, Marius Staring
Joint image registration and segmentation has long been an active area of research in medical imaging.
no code implementations • 11 Jun 2019 • Majd Zreik, Robbert W. van Hamersvelt, Nadieh Khalili, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Tim Leiner, Ivana Išgum
In patients with obstructive coronary artery disease, the functional significance of a coronary artery stenosis needs to be determined to guide treatment.
no code implementations • 12 Feb 2019 • Bob D. de Vos, Jelmer M. Wolterink, Tim Leiner, Pim A. de Jong, Nikolas Lessmann, Ivana Isgum
To meet demands of the increasing interest in quantification of CAC, i. e. coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed.
no code implementations • 24 Oct 2018 • Jelmer M. Wolterink, Konstantinos Kamnitsas, Christian Ledig, Ivana Išgum
Generative adversarial networks (GANs) and other adversarial methods are based on a game-theoretical perspective on joint optimization of two neural networks as players in a game.
no code implementations • 9 Oct 2018 • Julia M. H. Noothout, Bob D. de Vos, Jelmer M. Wolterink, Ivana Isgum
Hence, we propose an automatic method to segment the ascending aorta, the aortic arch and the thoracic descending aorta in low-dose chest CT without contrast enhancement.
no code implementations • 7 Oct 2018 • Jelmer M. Wolterink, Robbert W. van Hamersvelt, Max A. Viergever, Tim Leiner, Ivana Išgum
Evaluation using 24 test images of the CAT08 challenge showed that extracted centerlines had an average overlap of 93. 7% with 96 manually annotated reference centerlines.
no code implementations • 27 Sep 2018 • Jörg Sander, Bob D. de Vos, Jelmer M. Wolterink, Ivana Išgum
Current state-of-the-art deep learning segmentation methods have not yet made a broad entrance into the clinical setting in spite of high demand for such automatic methods.
no code implementations • 27 Sep 2018 • Steffen Bruns, Jelmer M. Wolterink, Robbert W. van Hamersvelt, Majd Zreik, Tim Leiner, Ivana Išgum
We propose augmentation of the training data with virtual mono-energetic reconstructions from a spectral CT scanner which show different attenuation levels of the contrast agent.
no code implementations • 13 Apr 2018 • Julia M. H. Noothout, Bob D. de Vos, Jelmer M. Wolterink, Tim Leiner, Ivana Išgum
Under the assumption that patches close to a landmark can determine the landmark location more precisely than patches farther from it, only those patches that contain the landmark according to classification are used to determine the landmark location.
no code implementations • 12 Apr 2018 • Majd Zreik, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Tim Leiner, Max A. Viergever, Ivana Isgum
The results demonstrate that automatic detection and classification of coronary artery plaque and stenosis are feasible.
no code implementations • 12 Apr 2018 • Jelmer M. Wolterink, Tim Leiner, Ivana Isgum
Results show that Wasserstein generative adversarial networks can be used to synthesize blood vessel geometries.
no code implementations • 24 Nov 2017 • Majd Zreik, Nikolas Lessmann, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Tim Leiner, Ivana Išgum
To identify patients with a functionally significant coronary artery stenosis, analysis is performed in several stages.
no code implementations • 3 Aug 2017 • Jelmer M. Wolterink, Tim Leiner, Max A. Viergever, Ivana Isgum
We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images.
2 code implementations • 3 Aug 2017 • Jelmer M. Wolterink, Anna M. Dinkla, Mark H. F. Savenije, Peter R. Seevinck, Cornelis A. T. van den Berg, Ivana Isgum
MR-only radiotherapy treatment planning requires accurate MR-to-CT synthesis.
no code implementations • 19 Apr 2017 • Bob D. de Vos, Jelmer M. Wolterink, Pim A. de Jong, Tim Leiner, Max A. Viergever, Ivana Išgum
We propose a method for automatic localization of one or more anatomical structures in 3D medical images through detection of their presence in 2D image slices using a convolutional neural network (ConvNet).
no code implementations • 12 Apr 2017 • Jelmer M. Wolterink, Tim Leiner, Max A. Viergever, Ivana Išgum
Ten training and ten test CMR scans cropped to an ROI around the heart were provided in the MICCAI 2016 HVSMR challenge.
no code implementations • 11 Apr 2017 • Pim Moeskops, Jelmer M. Wolterink, Bas H. M. van der Velden, Kenneth G. A. Gilhuijs, Tim Leiner, Max A. Viergever, Ivana Išgum
The CNN therefore learns to identify the imaging modality, the visualised anatomical structures, and the tissue classes.