1 code implementation • 15 Jun 2023 • Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, ZhiMing Ma, Omar Yaghi, Anima Anandkumar, Christian Borgs, Jennifer Chayes, Hongyu Guo, Jian Tang
Artificial intelligence for scientific discovery has recently generated significant interest within the machine learning and scientific communities, particularly in the domains of chemistry, biology, and material discovery.
no code implementations • 23 May 2023 • Christian Borgs, Jennifer Chayes, Christian Ikeokwu, Ellen Vitercik
We present a model for content curation and personalization that avoids filter bubbles, along with algorithmic guarantees and nearly matching lower bounds.
3 code implementations • 10 Jun 2019 • David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer Chayes, Yoshua Bengio
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help.
no code implementations • 2 May 2019 • Victor Schmidt, Alexandra Luccioni, S. Karthik Mukkavilli, Narmada Balasooriya, Kris Sankaran, Jennifer Chayes, Yoshua Bengio
We present a project that aims to generate images that depict accurate, vivid, and personalized outcomes of climate change using Cycle-Consistent Adversarial Networks (CycleGANs).
no code implementations • NAACL 2019 • Alexey Romanov, Maria De-Arteaga, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, Anna Rumshisky, Adam Tauman Kalai
In the context of mitigating bias in occupation classification, we propose a method for discouraging correlation between the predicted probability of an individual's true occupation and a word embedding of their name.
no code implementations • 29 Mar 2019 • Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael. I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar
Machine learning (ML) techniques are enjoying rapidly increasing adoption.
4 code implementations • 27 Jan 2019 • Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, Adam Tauman Kalai
We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives.
no code implementations • NeurIPS 2017 • Christian Borgs, Jennifer Chayes, Christina E. Lee, Devavrat Shah
We show that the mean squared error (MSE) of our estimator converges to $0$ at the rate of $O(d^2 (pn)^{-2/5})$ as long as $\omega(d^5 n)$ random entries from a total of $n^2$ entries of $Y$ are observed (uniformly sampled), $\E[Y]$ has rank $d$, and the entries of $Y$ have bounded support.
2 code implementations • 6 Nov 2016 • Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann Lecun, Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, Riccardo Zecchina
This paper proposes a new optimization algorithm called Entropy-SGD for training deep neural networks that is motivated by the local geometry of the energy landscape.
no code implementations • 20 May 2016 • Carlo Baldassi, Christian Borgs, Jennifer Chayes, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, Riccardo Zecchina
We define a novel measure, which we call the "robust ensemble" (RE), which suppresses trapping by isolated configurations and amplifies the role of these dense regions.
no code implementations • 4 Feb 2016 • Furong Huang, Animashree Anandkumar, Christian Borgs, Jennifer Chayes, Ernest Fraenkel, Michael Hawrylycz, Ed Lein, Alessandro Ingrosso, Srinivas Turaga
Single-cell RNA sequencing can now be used to measure the gene expression profiles of individual neurons and to categorize neurons based on their gene expression profiles.
1 code implementation • 4 Dec 2012 • Christian Borgs, Michael Brautbar, Jennifer Chayes, Brendan Lucier
Finally, we show that this runtime is optimal (up to logarithmic factors) for any beta and fixed seed size k.
Data Structures and Algorithms Social and Information Networks Physics and Society F.2.2; J.4