no code implementations • NAACL (ClinicalNLP) 2022 • Siting Liang, Klaus Kades, Matthias Fink, Peter Full, Tim Weber, Jens Kleesiek, Michael Strube, Klaus Maier-Hein
Writing the conclusion section of radiology reports is essential for communicating the radiology findings and its assessment to physician in a condensed form.
no code implementations • 3 Feb 2023 • Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavu, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.
1 code implementation • 24 Jan 2023 • Verena Jasmin Hallitschke, Tobias Schlumberger, Philipp Kataliakos, Zdravko Marinov, Moon Kim, Lars Heiliger, Constantin Seibold, Jens Kleesiek, Rainer Stiefelhagen
Recently, deep learning enabled the accurate segmentation of various diseases in medical imaging.
no code implementations • 29 Dec 2022 • Vikash Gupta, Barbaros Selnur Erdal, Carolina Ramirez, Ralf Floca, Laurence Jackson, Brad Genereaux, Sidney Bryson, Christopher P Bridge, Jens Kleesiek, Felix Nensa, Rickmer Braren, Khaled Younis, Tobias Penzkofer, Andreas Michael Bucher, Ming Melvin Qin, Gigon Bae, M. Jorge Cardoso, Sebastien Ourselin, Eric Kerfoot, Rahul Choudhury, Richard D. White, Tessa Cook, David Bericat, Matthew Lungren, Risto Haukioja, Haris Shuaib
To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation.
1 code implementation • 25 Nov 2022 • Jianning Li, André Ferreira, Behrus Puladi, Victor Alves, Michael Kamp, Moon-Sung Kim, Felix Nensa, Jens Kleesiek, Seyed-Ahmad Ahmadi, Jan Egger
The primary goal of this paper lies in the investigation of open-sourcing codes and pre-trained deep learning models under the MONAI framework.
no code implementations • 25 Oct 2022 • Christian Strack, Kelsey L. Pomykala, Heinz-Peter Schlemmer, Jan Egger, Jens Kleesiek
Using this map, the change in tumor volume can be evaluated.
no code implementations • 21 Oct 2022 • Oliver Ester, Fabian Hörst, Constantin Seibold, Julius Keyl, Saskia Ting, Nikolaos Vasileiadis, Jessica Schmitz, Philipp Ivanyi, Viktor Grünwald, Jan Hinrich Bräsen, Jan Egger, Jens Kleesiek
The segmentation of histopathological whole slide images into tumourous and non-tumourous types of tissue is a challenging task that requires the consideration of both local and global spatial contexts to classify tumourous regions precisely.
1 code implementation • 7 Oct 2022 • Constantin Seibold, Simon Reiß, Saquib Sarfraz, Matthias A. Fink, Victoria Mayer, Jan Sellner, Moon Sung Kim, Klaus H. Maier-Hein, Jens Kleesiek, Rainer Stiefelhagen
To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data.
1 code implementation • 29 Sep 2022 • Jianning Li, Jana Fragemann, Seyed-Ahmad Ahmadi, Jens Kleesiek, Jan Egger
The reconstruction loss and the Kullback-Leibler divergence (KLD) loss in a variational autoencoder (VAE) often play antagonistic roles, and tuning the weight of the KLD loss in $\beta$-VAE to achieve a balance between the two losses is a tricky and dataset-specific task.
no code implementations • 6 Sep 2022 • Christina Gsaxner, Jianning Li, Antonio Pepe, Yuan Jin, Jens Kleesiek, Dieter Schmalstieg, Jan Egger
The HoloLens (Microsoft Corp., Redmond, WA), a head-worn, optically see-through augmented reality display, is the main player in the recent boost in medical augmented reality research.
no code implementations • 2 Sep 2022 • Lars Heiliger, Zdravko Marinov, Max Hasin, André Ferreira, Jana Fragemann, Kelsey Pomykala, Jacob Murray, David Kersting, Victor Alves, Rainer Stiefelhagen, Jan Egger, Jens Kleesiek
Tumor volume and changes in tumor characteristics over time are important biomarkers for cancer therapy.
no code implementations • 4 Jul 2022 • André Ferreira, Jianning Li, Kelsey L. Pomykala, Jens Kleesiek, Victor Alves, Jan Egger
A solution to these problems can be the generation of synthetic data to perform data augmentation in combination with other more traditional methods of data augmentation.
no code implementations • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Beth Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clarisa Sánchez Gutiérrez, Shravya Shetty, Maarten van Smeden, Carole H. Sudre, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem.
no code implementations • 19 May 2022 • Moritz Rempe, Florian Mentzel, Kelsey L. Pomykala, Johannes Haubold, Felix Nensa, Kevin Kröninger, Jan Egger, Jens Kleesiek
Results: Both datasets were very similar to the ground truth (DICE scores of 92\%-98\% and Hausdorff distances of under 5. 5 mm).
no code implementations • 14 May 2022 • Constantin Seibold, Simon Reiß, M. Saquib Sarfraz, Rainer Stiefelhagen, Jens Kleesiek
We show that despite using unstructured medical report supervision, we perform on par with direct label supervision through a sophisticated inference setting.
Ranked #1 on
Thoracic Disease Classification
on ChestX-ray14
1 code implementation • 12 Apr 2022 • Jianning Li, David G. Ellis, Antonio Pepe, Christina Gsaxner, Michele R. Aizenberg, Jens Kleesiek, Jan Egger
We evaluate the SSM on several cranial implant design tasks, and the results show that, while the SSM performs suboptimally on synthetic defects compared to CNN-based approaches, it is capable of reconstructing large and complex defects with only minor manual corrections.
no code implementations • 21 Mar 2022 • Jana Fragemann, Lynton Ardizzone, Jan Egger, Jens Kleesiek
Encouraging the latent representation of a generative model to be disentangled offers new perspectives of control and interpretability.
no code implementations • 1 Dec 2021 • Constantin Seibold, Simon Reiß, Jens Kleesiek, Rainer Stiefelhagen
Following this thought, we use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set.
no code implementations • 1 Dec 2021 • Frederic Jonske, Maximilian Dederichs, Moon-Sung Kim, Jan Egger, Lale Umutlu, Michael Forsting, Felix Nensa, Jens Kleesiek
Additionally, an ablation study was performed to measure the performance impact of the network ensemble in the algorithm, and a comparative performance test with a commercial product was conducted.
no code implementations • 6 Aug 2021 • Yuan Jin, Antonio Pepe, Jianning Li, Christina Gsaxner, Fen-hua Zhao, Jens Kleesiek, Alejandro F. Frangi, Jan Egger
The standard imaging modality for diagnosis and monitoring is computed tomography (CT), which can provide a detailed picture of the aorta and its branching vessels if combined with a contrast agent, resulting in a CT angiography (CTA).
2 code implementations • 12 May 2021 • Sarthak Pati, Ujjwal Baid, Maximilian Zenk, Brandon Edwards, Micah Sheller, G. Anthony Reina, Patrick Foley, Alexey Gruzdev, Jason Martin, Shadi Albarqouni, Yong Chen, Russell Taki Shinohara, Annika Reinke, David Zimmerer, John B. Freymann, Justin S. Kirby, Christos Davatzikos, Rivka R. Colen, Aikaterini Kotrotsou, Daniel Marcus, Mikhail Milchenko, Arash Nazer, Hassan Fathallah-Shaykh, Roland Wiest, Andras Jakab, Marc-Andre Weber, Abhishek Mahajan, Lena Maier-Hein, Jens Kleesiek, Bjoern Menze, Klaus Maier-Hein, Spyridon Bakas
The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model that has gained knowledge via federated learning from multiple geographically distinct institutions, while their data are always retained within each institution, and 2) the federated evaluation of the generalizability of brain tumor segmentation models "in the wild", i. e. on data from institutional distributions that were not part of the training datasets.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Ben Glocker, Patrick Godau, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Bernhard Kainz, Emre Kavur, Hannes Kenngott, Jens Kleesiek, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clarisa Sanchez Gutierrez, Julien Schroeter, Anindo Saha, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Annette Kopp-Schneider, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
no code implementations • 10 Mar 2021 • Anjany Sekuboyina, Daniel Oñoro-Rubio, Jens Kleesiek, Brandon Malone
Multi-label classification of chest X-ray images is frequently performed using discriminative approaches, i. e. learning to map an image directly to its binary labels.
no code implementations • 2 Feb 2021 • Constantin Seibold, Matthias A. Fink, Charlotte Goos, Hans-Ulrich Kauczor, Heinz-Peter Schlemmer, Rainer Stiefelhagen, Jens Kleesiek
Detector-based spectral computed tomography is a recent dual-energy CT (DECT) technology that offers the possibility of obtaining spectral information.
no code implementations • 28 Oct 2020 • Jan Egger, Christina Gsaxner, Antonio Pepe, Kelsey L. Pomykala, Frederic Jonske, Manuel Kurz, Jianning Li, Jens Kleesiek
With the collection of large quantities of patient records and data, and a trend towards personalized treatments, there is a great need for automated and reliable processing and analysis of health information.
1 code implementation • 30 Sep 2020 • Constantin Seibold, Jens Kleesiek, Heinz-Peter Schlemmer, Rainer Stiefelhagen
In this paper, we address the problem of weakly supervised identification and localization of abnormalities in chest radiographs.