no code implementations • 17 Mar 2023 • Saikat Roy, Gregor Koehler, Constantin Ulrich, Michael Baumgartner, Jens Petersen, Fabian Isensee, Paul F. Jaeger, Klaus Maier-Hein
This leads to state-of-the-art performance on 4 tasks on CT and MRI modalities and varying dataset sizes, representing a modernized deep architecture for medical image segmentation.
no code implementations • 3 Feb 2023 • Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice.
1 code implementation • 13 Jan 2023 • Julian Schön, Raghavendra Selvan, Lotte Nygård, Ivan Richter Vogelius, Jens Petersen
This, in contrast to previous methods, allows us to synthesize continuous, smooth, and high-quality longitudinal volumetric data with limited supervision.
no code implementations • 13 Jan 2023 • Noor Fathima Ghouse, Jens Petersen, Auke Wiggers, Tianlin Xu, Guillaume Sautière
Diffusion probabilistic models have recently achieved remarkable success in generating high quality image and video data.
no code implementations • 5 Jan 2023 • Carsten T. Lüth, David Zimmerer, Gregor Koehler, Paul F. Jaeger, Fabian Isensee, Jens Petersen, Klaus H. Maier-Hein
By utilizing the representations of contrastive learning, we aim to fix the over-fixation on low-level features and learn more semantic-rich representations.
1 code implementation • 20 Jul 2022 • Julian Schön, Raghavendra Selvan, Jens Petersen
The results show that unsupervised methods to discover interpretable directions in GANs generalize to VAEs and can be applied to medical images.
no code implementations • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Florian Büttner, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Emre Kavur, Carole H. Sudre, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, M. Jorge Cardoso, Veronika Cheplygina, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output.
no code implementations • 15 Sep 2021 • Raghavendra Selvan, Erik B Dam, Søren Alexander Flensborg, Jens Petersen
The performance of the proposed tensor network segmentation model is compared with relevant baseline methods.
2 code implementations • 23 Jun 2021 • Jens Petersen, Fabian Isensee, Gregor Köhler, Paul F. Jäger, David Zimmerer, Ulf Neuberger, Wolfgang Wick, Jürgen Debus, Sabine Heiland, Martin Bendszus, Philipp Vollmuth, Klaus H. Maier-Hein
The ability to estimate how a tumor might evolve in the future could have tremendous clinical benefits, from improved treatment decisions to better dose distribution in radiation therapy.
1 code implementation • 22 Jun 2021 • Abraham George Smith, Jens Petersen, Cynthia Terrones-Campos, Anne Kiil Berthelsen, Nora Jarrett Forbes, Sune Darkner, Lena Specht, Ivan Richter Vogelius
Organ-at-risk contouring is still a bottleneck in radiotherapy, with many deep learning methods falling short of promised results when evaluated on clinical data.
1 code implementation • 9 Jun 2021 • Jens Petersen, Gregor Köhler, David Zimmerer, Fabian Isensee, Paul F. Jäger, Klaus H. Maier-Hein
Neural Processes (NPs) are a family of conditional generative models that are able to model a distribution over functions, in a way that allows them to perform predictions at test time conditioned on a number of context points.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Ben Glocker, Patrick Godau, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Bernhard Kainz, Emre Kavur, Hannes Kenngott, Jens Kleesiek, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clarisa Sanchez Gutierrez, Julien Schroeter, Anindo Saha, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Annette Kopp-Schneider, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
1 code implementation • 13 Feb 2021 • Raghavendra Selvan, Erik B Dam, Jens Petersen
We use the matrix product state (MPS) tensor network on non-overlapping patches of a given input image to predict the segmentation mask by learning a pixel-wise linear classification rule in a high dimensional space.
no code implementations • 1 Jan 2021 • Jens Petersen, Paul F Jaeger, Gregor Koehler, David Zimmerer, Fabian Isensee, Klaus Maier-Hein
Neural Processes are a powerful tool for learning representations of function spaces purely from examples, in a way that allows them to perform predictions at test time conditioned on so-called context observations.
no code implementations • 28 Nov 2019 • David Zimmerer, Jens Petersen, Simon A. A. Kohl, Klaus H. Maier-Hein
Through training on unlabeled data, anomaly detection has the potential to impact computer-aided diagnosis by outlining suspicious regions.
no code implementations • 27 Nov 2019 • David Zimmerer, Jens Petersen, Klaus Maier-Hein
Variational Auto-Encoders have often been used for unsupervised pretraining, feature extraction and out-of-distribution and anomaly detection in the medical field.
1 code implementation • 9 Jul 2019 • Jens Petersen, Paul F. Jäger, Fabian Isensee, Simon A. A. Kohl, Ulf Neuberger, Wolfgang Wick, Jürgen Debus, Sabine Heiland, Martin Bendszus, Philipp Kickingereder, Klaus H. Maier-Hein
Existing approaches to modeling the dynamics of brain tumor growth, specifically glioma, employ biologically inspired models of cell diffusion, using image data to estimate the associated parameters.
1 code implementation • 4 Jul 2019 • David Zimmerer, Fabian Isensee, Jens Petersen, Simon Kohl, Klaus Maier-Hein
An assumption-free automatic check of medical images for potentially overseen anomalies would be a valuable assistance for a radiologist.
4 code implementations • 17 Apr 2019 • Fabian Isensee, Paul F. Jäger, Simon A. A. Kohl, Jens Petersen, Klaus H. Maier-Hein
Biomedical imaging is a driver of scientific discovery and core component of medical care, currently stimulated by the field of deep learning.
1 code implementation • 11 Mar 2019 • Wouter M. Kouw, Silas N. Ørting, Jens Petersen, Kim S. Pedersen, Marleen de Bruijne
Here we present a smoothness prior that is fit to segmentations produced at another medical center.
1 code implementation • 28 Feb 2019 • Abraham George Smith, Jens Petersen, Raghavendra Selvan, Camilla Ruø Rasmussen
We evaluate our system using 867 images for which we have obtained line-intersect counts, attaining a Spearman rank correlation of 0. 9748 and an $r^2$ of 0. 9217.
6 code implementations • 13 Jan 2019 • Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.
no code implementations • 14 Dec 2018 • David Zimmerer, Simon A. A. Kohl, Jens Petersen, Fabian Isensee, Klaus H. Maier-Hein
Unsupervised learning can leverage large-scale data sources without the need for annotations.
1 code implementation • 21 Nov 2018 • Raghavendra Selvan, Thomas Kipf, Max Welling, Antonio Garcia-Uceda Juarez, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne
Graph refinement, or the task of obtaining subgraphs of interest from over-complete graphs, can have many varied applications.
no code implementations • 17 Oct 2018 • Silas Nyboe Ørting, Jens Petersen, Laura H. Thomsen, Mathilde M. W. Wille, Marleen de Bruijne
We evaluate performance on 600 low-dose CT scans from the Danish Lung Cancer Screening Trial and find that learning from emphysema presence labels, which are much easier to obtain, gives equally good performance to learning from emphysema extent labels.
5 code implementations • 27 Sep 2018 • Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, Klaus H. Maier-Hein
The U-Net was presented in 2015.
Ranked #3 on
Medical Image Segmentation
on Synapse multi-organ CT
no code implementations • 23 Jun 2018 • Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, Marleen de Bruijne
We propose to use statistical ranking of local hypotheses in constructing the MHT tree, which yields a probabilistic interpretation of scores across scales and helps alleviate the scale-dependence of MHT parameters.
no code implementations • 19 Jun 2018 • Silas Nyboe Ørting, Jens Petersen, Veronika Cheplygina, Laura H. Thomsen, Mathilde M. W. Wille, Marleen de Bruijne
We evaluate the networks on 973 images, and show that the CNNs can learn disease relevant feature representations from derived similarity triplets.
no code implementations • 12 Apr 2018 • Raghavendra Selvan, Thomas Kipf, Max Welling, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne
We present extraction of tree structures, such as airways, from image data as a graph refinement task.
no code implementations • 10 Apr 2018 • Raghavendra Selvan, Max Welling, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne
Performance of the method is compared with two methods: the first uses probability images from a trained voxel classifier with region growing, which is similar to one of the best performing methods at EXACT'09 airway challenge, and the second method is based on Bayesian smoothing on these probability images.
no code implementations • 7 Aug 2017 • Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, Marleen de Bruijne
The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector.
no code implementations • 24 Nov 2016 • Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, Marleen de Bruijne
The results show improvements in performance when compared to the original method and region growing on intensity images.
no code implementations • NeurIPS 2013 • Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, Karsten Borgwardt
While graphs with continuous node attributes arise in many applications, state-of-the-art graph kernels for comparing continuous-attributed graphs suffer from a high runtime complexity; for instance, the popular shortest path kernel scales as $\mathcal{O}(n^4)$, where $n$ is the number of nodes.
no code implementations • 29 Mar 2013 • Aasa Feragen, Jens Petersen, Dominik Grimm, Asger Dirksen, Jesper Holst Pedersen, Karsten Borgwardt, Marleen de Bruijne
Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree.